首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Journal of Non》2007,353(11-12):1065-1069
In the present work the dependence of electrical properties of a-SiC:H thin films on annealing temperature, Ta, has been extensively studied. From the measurements of dark dc electrical conductivity, σD, in the high temperature range (from 283 up to 493 K), was found that the conductivity activation energy, Ea, is invariant for Ta  673 K and equal to 0.64 eV, whereas for Ta from 673 up to 873 K, Ea increases at about 0.2 eV reaching to a maximum value 0.85 eV at Ta = 873 K, suggesting the optimum material quality. This behavior of Ea as a function of Ta is mainly attributed to relaxation of the strain in the amorphous network, which is possibly combined with weak hydrogen emission for temperatures up to 873 K. For further increase of Ta (>873 K) the phenomenon of hydrogen emission, causes rapid decrease of Ea down to 0.24 eV at Ta = 998 K, deteriorating the material quality. These results are also supported by the measurements of dark dc electrical conductivity in the low temperature range (from 133 up to 283 K), where the dependence of the density of gap states at the Fermi level, N(EF), on annealing temperature presents the minimum value at Ta = 873 K. The Meyer–Nelder rule was found to hold for the a-SiC:H thin films for annealing temperatures up to 873 K. Finally, the dependence of dark dc electrical conductivity at room temperature, σDRT, on Ta showed to reflect directly the dependence of Ea on Ta.  相似文献   

2.
《Journal of Non》2007,353(44-46):4137-4142
Amorphous tungsten trioxide (a-WO3) thin films were prepared by thermal evaporation technique. The electrical conductivity and dielectric properties of the prepared films have been investigated in the frequency range from 100 Hz to 100 kHz and in the temperature range 293–393 K. In spite of the absence of the dielectric loss peaks, application of the dielectric modulus formulism gives a simple method for evaluating the activation energy of the dielectric relaxation. The frequency dependence of σ(ω) follows the Jonscher’s universal dynamic law with the relation σ(ω) = σdc + s, where s is the frequency exponent. The conductivity in the direct regime, σdc, is described by the small polaron model. The electrical conductivity and dielectric properties show that Hunt’s model is well adapted to a-WO3 films.  相似文献   

3.
In the present report, ionic transport properties and microstructural investigations of superionic materials in a cost-effective glassy system xCuI–(100 ? x)[2Ag2O–0.7V2O5–0.3B2O3], where x = 30, 40, 45, 50 and 60, have been described. The temperature dependent electrical conductivity studies were carried out by ac impedance analysis. The microstructure of the materials studied by SEM indicated the presence of dispersed CuO and AgI micro-crystals in the silver oxysalt glass matrix. High room temperature electrical conductivity of 3.58 × 10?3 S cm?1 and low activation energy of 0.24 eV were obtained for the best conducting composition. The ac impedance data were analyzed using impedance and modulus formalisms. These materials show extremely high ti value of 0.999 and the ionic conductivity is apparently due to Ag+ ions only. The use of two glass formers helped to form materials with higher Tg, higher thermal stability and better ionic transport properties.  相似文献   

4.
《Journal of Non》2006,352(23-25):2315-2318
Transparent undoped semiconductor indium oxide films were deposited by radio frequency (rf) plasma enhanced reactive thermal evaporation (rf-PERTE) of indium at low substrate temperature. It was experimentally verified that the variation of rf power density has a strong influence on the electrical and structural properties of the films. The thickness of the InOx films is of about 100 nm. Results show that InOx films show an average visible transmittance of about 85% and energy gap of about 2.6 eV. Structural and electrical conductivity measurements show that films are polycrystalline and there exists a linear variation of conductivity logarithm vs reciprocal of temperature. Electrical conductivity variation of 17.6 to 5.8 × 10−3 (Ω cm)−1 for films produced at rf power densities ranging from 3.9 to 78.1 mW cm−3 was obtained. This controllable semiconductor behavior can therefore satisfy the requirement of a particular application for these type of films.  相似文献   

5.
Transparent and conductive/semiconductive undoped indium oxide (InOx) thin films were deposited at room temperature. The deposition technique used is the radio frequency (rf) plasma enhanced reactive thermal evaporation (rf-PERTE) of indium (In) in the presence of oxygen. The influence of oxygen partial pressure on the properties of these films is presented. The oxygen partial pressure varied between 3 × 10?2 and 1.3 × 10?1 Pa. Undoped InOx films, 100 nm thick, deposited at the oxygen partial pressure of 6 × 10?2 Pa show a conductive behaviour, exhibit an average visible transmittance of 81%, a band gap around 2.7 eV and an electrical conductivity of about 1100 (Ω cm)?1. For oxygen pressures greater than 6 × 10?2 Pa, semiconductive films are obtained, maintaining the visible transmittance. Films deposited at lower pressures are conductive but dark. From XPS data, films deposited at an oxygen partial pressure of 6 × 10?2 Pa show the highest amount of oxygen in the film surface and the lowest ratio between oxygen in the oxide crystalline and amorphous phases.  相似文献   

6.
《Journal of Non》2007,353(30-31):2934-2937
The structural, optical dispersion and electrical conductivity properties of the CuSe thin film have been investigated using X-ray diffraction, electrical and optical characterization methods. X-ray diffraction results indicate that CuSe thin film has an amorphous structure. The electrical conductivity of the CuSe film increases with increasing temperature. The activation energy and room temperature conductivity values of the film were found to be 1.32 meV and 3.89 × 10−3 S/cm, respectively. The refractive index dispersion of the thin film obeys the single oscillator model and single oscillator parameters were determined. The Eo, n, and So values of the CuSe thin film were found to be 5.08 eV, 3.55 and 1.92 × 1014 m−2, respectively. The obtained results suggest that CuSe film is an amorphous semiconductor.  相似文献   

7.
The crystallization parameters such as glass transition temperature (Tg), onset crystallization temperature (Tc), peak crystallization temperature (Tp) and enthalpy released (ΔHC) of the bulk Se–Te chalcogenide glass has been studied by using Differential Scanning Calorimeter (DSC), under non-isothermal condition at a heating rate of 20 K/min. The values of Tg, Tc, Tp and ΔHC with and without laser irradiation for different exposure time have been studied. The optical absorption of pristine and laser irradiated thermally evaporated Se–Te films has been measured. The films shows indirect allowed interband transition that is influenced by the laser irradiation. The optical energy gap has been found to decrease from 1.61 to 1.38 eV with increasing irradiation time from 5 to 20 min. The results have been analyzed on the basis of laser irradiation-induced defects in the film.  相似文献   

8.
Proton conducting polymer electrolytes based on poly(vinyl acetate) (PVAc) and perchloric acid (HClO4) have been prepared by solution casting technique with various compositions. The X-ray diffraction analysis confirms the polymer–HClO4 complex formation. FTIR spectra analysis reveals the interaction between proton and ester oxygen of poly(vinyl acetate) (PVAc). The shift in Tg towards the lower temperature indicates that the polymer salt interaction takes places in the amorphous phase of the polymer matrix. Ac impedance spectroscopy reveals that 75 mol% PVAc:25 mol% HClO4 exhibits maximum conductivity, 3.75 × 10? 3 S cm? 1 at room temperature (303 K). The increase in conductivity with increase in dopant concentration and temperature may be attributed to the enhanced mobility of the polymer chains, number of charge carriers and rotations of side chains. The temperature dependence of conductivity shows non-Arrhenius behavior at higher temperatures.  相似文献   

9.
Thin poly(o-methoxyaniline) (POMA) films have been formed by thermovacuum deposition in the temperature range of 350–450 °C and at a pressure of 5 × 10?5 Torr. The structure properties of vacuum deposited POMA films according to FTIR and UV–VIS spectra are similar to those observed for the emeraldine form of polyaniline. Current–voltage characteristics (IV) of sandwichtype device ITO/POMA/A1 possess rectifying properties with the ideality factor ≈4 at room temperature. On the basis of the dependence of conductivity on frequency in the frequency range of 10 Hz to 1 MHz, it is shown that the Pollack–Pohl current flow hopping mechanism dominates in a polymer film; such mechanism is typical of non-ordered systems.  相似文献   

10.
《Journal of Crystal Growth》2003,247(3-4):497-504
Structural, morphological, optical and electrical properties of ZnO thin films prepared by chemical spray pyrolysis from zinc acetate (Zn(CH3COO)2 2H2O) aqueous solutions, on polished Si(1 0 0), and fused silica substrates for optical characterization, have been studied in terms of deposition time and substrate temperature. The growth of the films present three regimes depending on the substrate temperature, with increasing, constant and decreasing growth rates at lower, middle, and higher-temperature ranges, respectively. Growth rate higher than 15 nm min−1 can be achieved at Ts=543 K. ZnO film morphological and electrical properties have been related to these growth regimes. The films have been characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy.  相似文献   

11.
D. Singh  S. Kumar  R. Thangaraj 《Journal of Non》2012,358(20):2826-2834
Optical and electrical properties of the (Se80Te20)100 ? xAgx (0  x  4) ultra-thin films have been studied. The ultra-thin films were prepared by thermal evaporation of the bulk samples. Thin films were annealed below glass transition temperature (328 K) and in between glass transition temperature and crystallization temperature (343 K). Thin films annealed at 343 K showed crystallization peaks for Se–Te–Ag phases in the XRD spectra. The transmission and reflection of as-prepared and annealed ultra-thin films were obtained in the 300–1100 nm spectral region. The optical band gap has been calculated from the transmission and reflection data. The refractive index has been calculated by the measured reflection data. It has been found that the optical band gap increases, but the refractive index, extinction coefficient, real and imaginary dielectric constant decrease with increase in Ag content. The optical band gap and refractive index show the variation in their values with increase in the annealing temperature. The extinction coefficient increases with increasing annealing temperature. The surface morphology of ultra-thin films has been determined using a scanning electron microscope (SEM). The measured dc conductivity, under a vacuum of 10? 5 mbar, showed thermally activated conduction with single activation energy in the measured temperature range (288–358 K) and it followed Meyer–Neldel rule. The dc activation energy decreases with increase in Ag content in pristine and annealed films. The results have been analyzed on the bases of thermal annealing effects in the chalcogenide thin films.  相似文献   

12.
Hydrogenated amorphous silicon thin films doped with chalcogens (Se or S) were prepared by the decomposition of silane (SiH4) and H2Se/H2S gas mixtures in an RF plasma glow discharge on 7059 corning glass at a substrate temperature 230 °C. The illumination measurements were performed on these samples as a function of doping concentration, temperature and optical density. The activation energy varied with doping concentration and is higher in Se-doped than S-doped a-Si:H thin films due to a low defect density. From intensity versus photoconductivity data, it is observed that the addition of Se and S changes the recombination mechanism from monomolecular at low doping concentration films to bimolecular at higher doping levels. The photosensitivity (σph/σd) of a-Si, Se:H thin films decreases as the gas ratio H2Se/SiH4 increased from 10?4 to 10?1, while the photosensitivity of a-Si, S:H thin films increases as the gas ratio H2S/SiH4 increased from 6.8 × 10?7 to 1.0×10?4.  相似文献   

13.
The effect of post-deposition isothermal annealing (30 °C ? TA ? 70 °C) and visible-light illumination on the complex AC-impedance of undoped selenium thin films deposited at the substrate temperatures TS = 30, 50, 70 °C has been studied in the frequency range 0.2–12 kHz. The AC-impedance of amorphous selenium (a-Se) films (TS, TA < 50 °C) was mainly capacitive, with no loss peaks being observed in their Z″(ω)–ω curves, irrespective of illumination. This behavior was ascribed to a dominant charge-carrier trapping effect of bulk/surface charged defects usually present in a-Se. On the other hand, the measured Z″(ω)–Z′(ω) diagrams of illuminated polycrystalline Se samples (50 °C ? TS, TA ? 70 °C) exhibited almost full semicircles, whereas their Z″(ω)–ω curves revealed prominent loss peaks at well-defined frequencies. As the annealing temperature or light intensity is increased the loci of the points determined by intersections of these semicircles with the Z′-axis at the low-frequency side shift greatly towards the origin, while the loss-peak positions shift to higher frequencies. These experimental findings were explained in terms of a significant increase in electrical conductivity of selenium films due to thermally-induced crystallization at temperatures beyond glass-transformation region of undoped selenium and to creation of electron–hole pairs by visible-light illumination.  相似文献   

14.
The grain boundary groove shapes for equilibrated solid neopentylglycol (NPG) solution (NPG–3 mol% D-camphor) in equilibrium with the NPG–DC eutectic liquid (NPG–36.1 mol% D-camphor) have been directly observed using a horizontal linear temperature gradient apparatus. From the observed grain boundary groove shapes, the Gibbs–Thomson coefficient (Г), solid–liquid interfacial energy (σSL) of NPG solid solution have been determined to be (7.5±0.7)×10?8 K m and (8.1±1.2)×10?3 J m?2, respectively. The Gibbs–Thomson coefficient versus TmΩ1/3, where Ω is the volume per atom was also plotted by linear regression for some organic transparent materials and the average value of coefficient (τ) for nonmetallic materials was obtained to be 0.32 from graph of the Gibbs–Thomson coefficient versus TmΩ1/3. The grain boundary energy of solid NPG solution phase has been determined to be (14.6±2.3)×10?3 J m?2 from the observed grain boundary groove shapes. The ratio of thermal conductivity of equilibrated eutectic liquid to thermal conductivity of solid NPG solution was also measured to be 0.80.  相似文献   

15.
A series of borophosphate glasses in the composition (B2O3)0.10–(P2O5)0.40–(CuO)0.50?x–(MoO3)x; 0.05 ? x ? 0.50 have been investigated for room temperature density and dc conductivity over the temperature range from 350 to 650 K. The density decreased with increase in MoO3 over the composition range studied except a slight increase around 0.35 mole fraction. The observed initial decrease in conductivity with the addition of MoO3 has been attributed to the hindrance offered by the Mo+ ions to the electronic motions. The observed peak-like behavior in conductivity in the composition range 0.20 – 0.50 mol% of MoO3 is ascribed to the mixed transition metal ion effect (MTE). Mott’s small polaron hopping model has been used to analyze the high temperature conductivity data and the activation energy for conduction has been determined. The low temperature conductivity has been analyzed in view of Mott’s and Greaves variable range hopping models. It is for the first time that conduction mechanisms have been explored and MTE detected in mixed transition metal ions doped borophosphate glasses.  相似文献   

16.
A Li1.5[Al0.5Ge1.5(PO4)3] glass composition was subjected to several crystallization treatments to obtain glass–ceramics with controlled microstructures. The glass transition (Tg), crystallization onset (Tx) and melting (Tm) temperatures of the parent glass were characterized by differential scanning calorimetry (DSC). The glass has a reduced glass transition temperature Tgr = Tg/Tm = 0.57 indicating the possibility of internal nucleation. This assumption was corroborated by the similar DSC crystallization peaks from monolithic and powder samples. The temperature of the maximum nucleation rate was estimated by DSC. Different microstructures were produced by double heat treatments, in which crystal nucleation was processed at the estimated temperature of maximum nucleation rate for different lengths of time. Crystals were subsequently grown at an intermediate temperature between Tg and Tx. Single phase glass–ceramics with Nasicon structures and grain sizes ranging from 220 nm to 8 μm were then synthesized and the influence of the microstructure on the electrical conductivity was analysed. The results showed that the larger the average grain size, the higher the electrical conductivity. Controlled glass crystallization allowed for the synthesis of glass–ceramics with fine microstructures and higher electrical conductivity than those of ceramics with the same composition obtained by the classical sintering route and reported in literature.  相似文献   

17.
Silicon thin films are deposited using plasma enhanced chemical vapor deposition (PECVD) of silane, argon, hydrogen mixture at various pressures in the range of 2–8 Torr. Raman scattering shows these to be amorphous in the pressure range 6–8 Torr, and nanocrystalline in the range 2–4 Torr. The volume fraction of nanocrystals is estimated by fitting the Raman data to three peaks and is found to be ~75% for the films deposited at low pressure, density of states of these films was measured. It is observed that the electrical conduction in these films depends on the crystalline volume fraction (ρ), estimated from the laser Raman Spectroscopy. Temperature dependence electrical conductivity shows that at lower temperatures thermionic emission dominates for the films with lower ρ, whereas, hopping is the main conduction mechanism for the films having high ρ. The density of states is estimated from the space charge limited currents (SCLC) observed at high fields. Photoconductivity at room temperature is also measured. The amorphous films are found to be more photosensitive than the nanocrystalline one. In the context of these findings, changes in the properties of silicon from amorphous to nanocrystalline are described.  相似文献   

18.
The elastic properties of alkali germanate glasses, xR2O?(100 ? x)GeO2 (R = Li, Na, K, Rb, Cs ; x = 14, 28), have been studied by Brillouin scattering in the wide temperature range up to 1200 °C. The remarkable aging effect of Brillouin shift ΔνL has been observed below a glass transition temperature Tg  500 °C. The temperature dependence of longitudinal sound velocity VL of well annealed glasses shows the gradual decrease below Tg, while on further heating the remarkable decrease is observed above Tg. The scaled temperature dependence of VL is nearly independent on alkali metals below the melting temperature Tm. While on further heating above Tm, the drastic decrease of VL and increase of αL show the remarkable alkali dependence. It may be attributed to the appearance of dynamic process related to ionic hopping of alkali metals released from glass network above Tm.  相似文献   

19.
The electrical conductivity and dielectric properties of xB2O3–(40 ? x)Fe2O3–60P2O5 (x = 6–20, mol%) glasses were investigated in the frequency range from 0.01 Hz to 1 MHz and the temperature range from 303 K to 523 K. At temperatures below 523 K an ac conductivity and the dielectric constant follow the universal dielectric response (UDR), being typical for hopping or tunneling of localized charge carriers. A detailed analysis of the temperature dependence of the UDR parameter s in terms of the theoretical model for tunneling of small polarons revealed that below 523 K this mechanism governs the charge transport in these glasses. The comparison of the values of characteristic coefficients W and α determined by two different methods confirms the polaronic behavior of boron doped iron phosphate glasses.  相似文献   

20.
Li+ ion conducting Li–Al–Ti–P–O thin films were fabricated on ITO-glass substrates at various temperatures from 25 to 400 °C by RF magnetron sputtering method. When the substrate temperature is higher than 300 °C, severe destruction of ITO films were confirmed by XRD (X-ray diffraction) and the abrupt transformation of one semi-circle into two semi-circles on the impedance spectra. These as-deposited Li–Al–Ti–P–O solid state electrolyte thin films have an amorphous structure confirmed by XRD and a single semicircle on the impedance spectra. Good transmission higher than 80% in the visible light range of these electrolyte thin films can fulfill the demand of electro-chromic devices. Field emission scanning electron microscopy and atomic force microscopy showed the denser, smoother and more uniform film structure with the enhanced substrate temperature. Measurements of impedance spectra indicate that the gradual increased conductivity of these Li–Al–Ti–P–O thin films with the elevation of substrate temperature from room temperature to 300 °C is originated from the increase of the pre-exponential factor (σ0). The largest Li-ion conductivity can come to 2.46 × 10? 5 S cm? 1. This inorganic solid lithium ion conductor film will have a potential application as an electrolyte layer in the field such as lithium batteries or all-solid-state EC devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号