首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
V. Simon  C. Albon  S. Simon 《Journal of Non》2008,354(15-16):1751-1755
The in vitro behavior of xAg2O (100 ? x)[50P2O5 · 30CaO · 20Na2O] glasses (0.14 ? x ? 20 mol%) is investigated in simulated body fluid (SBF) mainly with respect to bioactivity and silver ions release. In order to estimate the biodegradability and bioactivity, the samples were soaked in SBF, which has almost equal ions concentration to those of human blood plasma, and kept at 37 °C for fixed periods of time up to 18 days. After the fixed periods of time analyses were performed on the SBF solutions. Calcium and silver ions concentration of SBF after different soaking times of the glass samples were primarily examined. Conductivity data support the assumption that the released silver ions are reduced in SBF and their release is obstructed by growth of the bioactive layer on the glass surface. X-ray diffraction and infrared analysis attest the development on glass surface of a hydroxyapatite type layer.  相似文献   

2.
J. Massera  L. Hupa  M. Hupa 《Journal of Non》2012,358(18-19):2701-2707
The influence of up to 4 mol% substitution of MgO for CaO on the properties of the bioactive glass S53P4 was studied. Thermal analysis, hot stage microscopy and X-ray diffractometry were utilized to measure the thermal properties and the crystallization characteristics of the glasses. The in-vitro bioactivity was measured by immersing the glasses for 4 h to one week in simulated body fluid. The formation of silica rich and hydroxyapatite layers was assessed from FTIR spectra analysis and SEM images of the glasses surface. Increasing substitution of MgO for CaO decreased the glass transition, the onset and endset of melting and the fusion temperatures. The activation energies for glass transition and crystallization also decreased from (790 ± 30) to (407 ± 30) kJ/mol and from (283 ± 30) to (145 ± 30) kJ/mol, respectively, indicating a decrease in bond length and an increase in bond strength with progressive MgO at the expense of CaO. All glasses dissolved identically in SBF during the first 24 h of immersion with subsequent formation of hydroxyapatite at the grain surfaces. The thickness of the surface layers decreased with increasing MgO content. For longer duration of immersion, the glasses with the highest MgO contents exhibited a slower reaction tendency, with simulated body fluid, than the Mg-free glass. These changes in the glass structure and in-vitro properties may be of interest for products from bioactive glasses with large surface area to volume ratio.  相似文献   

3.
《Journal of Non》2006,352(32-35):3451-3456
The characteristics of mesoporous silica prepared at different temperatures and the behavior of this system relating to the microencapsulation of a model drug were investigated. The preparation of mesoporous materials was initiated with the dissolution of a surfactant in distilled water and strong acid medium. After this, tetraethyl orthosilicate was added under agitation. The mixture was heated for 24 h at the synthesis temperature (60 °C, 80 °C, 100 °C and 130 °C) under static conditions. The surfactant was removed by calcination, which was carried out by increasing the temperature to 550 °C for 5 h. Atenolol was used as a model drug to study the kinetics of drug delivery. It could be observed that aging materials at higher temperatures presents no microporosity, and this influences the control of the release of the model drug.  相似文献   

4.
《Journal of Non》2007,353(18-21):1854-1859
Bioactive sol–gel derived glass scaffolds bond to bone and their dissolution products stimulate new bone growth in vitro and in vivo; they may therefore be used to regenerate diseased or damaged bone to its original state and function in bone tissue engineering applications. We seek herein to cast light upon these reaction mechanisms by attempting to quantify changes in the atomic-scale structure of the glass scaffold as a result of in vitro reaction with simulated body fluid (SBF). We report the results of a study using neutron diffraction with isotopic substitution (NDIS) to gain new insights into the nature of the atomic scale calcium environment in bioactive sol–gel glasses. This is augmented by high-energy X-ray total diffraction. We have thereby begun to explore the nature of the principal stages to the generation of hydroxyapatite (i.e. the mineral ‘building block’ of bone) on the bioactive glass surface. The data are examined in light of our complementary solid-state NMR and computer modelling studies. The results reveal that the Ca–O environment in an SBF exposed (CaO)0.3(SiO2)0.7 sol–gel glass, which initially comprises three distinct but partially overlapping correlation shells centered at 2.3 Å, 2.5 Å and 2.75 Å, preferentially loses the shortest length correlation. A Ca⋯H correlation appears at 2.95 Å. The surface deposited Ca⋯P environment consists of three partially overlapping, but nonetheless distinct, correlation shells, at 3.15 Å, 3.40 Å and 3.70 Å.  相似文献   

5.
Ternary zinc–calcium-phosphate glasses prepared by classical melting method were characterized through X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) along with energy dispersive X-ray analysis (EDAX), Fourier Transform InfraRed (FTIR) and Raman spectroscopy. The study of these glasses was done in order to supply information regarding their structural particularities since the zinc role in biological environment, especially in the bone, is still under debate.XRD analysis confirmed the vitreous character of the as-prepared samples, while SEM and EDAX measurements indicated the presence of some non-homogeneous domains on their surfaces with approximately similar elemental composition. According to FTIR and Raman spectroscopy, the local structure of glasses up to 10 mol% ZnO is mainly built by Q2 tetrahedrons connected by P–O–P linkages. For 50 mol% ZnO, the modifier role of zinc ions is strongly reflected on the local structure dominated in this case by Q1 pyrophosphate units.The surface reactivity of the samples has been analyzed in vitro by immersion in simulated body fluid (SBF) at 37 °C. XRD, SEM–EDAX, FTIR and Raman methods were employed to characterize the structural changes that occurred on the surface of ZnO–CaO–P2O5 samples reacting with SBF. The X-ray diffraction patterns demonstrated the formation of a hydroxyapatite layer on the samples surface while the other used methods didn't reveal concisely that phenomenon. Based on X-ray measurements, the influence of zinc concentration on the hydroxyapatite layer development was followed.  相似文献   

6.
A macroporous nanoscale bulk bioactive glass (SiO2–CaO–P2O5 system) was prepared by sol–gel co-template method. Porosimeter analysis showed that the as-synthesized bioactive glasses (BGs) had a porosity of 85% and exhibited a multimodal pore size distribution, nanopores (10–40 nm) and macropores (100 nm–10 μm). Morphological and structural characterizations showed the pores were interconnected with pore walls of about 250 nm in width and 1 μm in length. In vitro bioactivity test indicated that the as-synthesized bulk BGs exhibited faster apatite layer formation capability than the conventional sol–gel BGs. Additionally, the deposited layer was identified as hydroxycarbonate apatite, which is similar to the inorganic part of human bone.  相似文献   

7.
《Journal of Non》2005,351(40-42):3209-3217
Highly ordered mesoporous bioactive glasses (MBGs) with different compositions have been synthesized by a combination of surfactant templating, sol–gel method and evaporation-induced self-assembly (EISA) processes. The texture properties and compositional homogeneity of MBGs have been characterized and compared with conventional bioactive glasses (BGs) synthesized in the absence of surfactants by evaporation method. The formation mechanism (pore – composition dependence) and compositional homogeneity in the case of MBG materials are different from those in conventional BGs. Unlike conventional sol–gel-derived BGs that shows a direct correlation between their composition and pore architecture, MBGs with different compositions may possess similar pore volume and uniformly distributed pore size when the same structure-directing agent is utilized. The framework of MBG is homogeneously distributed in composition at the nanoscale and the inorganic species generally exists in the form of amorphous phase. MBGs calcined at temperatures ⩽1073 K exhibit ordered mesopores; at higher temperature such as 1173 K, the inorganic wall becomes crystalline and the mesostructure is collapsed. The leaching test of MBG in water indicates that MBGs may have excellent degradability in body fluid, which is important for prospective bio-applications.  相似文献   

8.
《Journal of Non》2005,351(40-42):3325-3333
P2O5–TiO2–SiO2 based glasses have been prepared by a sol–gel process. The glasses were characterized by structural, thermal, nitrogen adsorption–desorption and conductivity measurements. The structural formation has been confirmed by the FTIR and NMR analysis. The proton conductivity of the glasses increased linearly with increase in temperature. Glasses with an average pore size less than 2 nm showed higher values of proton conductivity in humid atmosphere. The conductivity value increased from 6.47 × 10−4 S/cm to 3.04 × 10−2 S/cm at 70% RH in the temperature range 30–90 °C. We observed in fuel cell measurements that the performance of the E1 electrode is superior to that of the other electrodes at the same operating condition. The power density shows a similar pattern to current density.  相似文献   

9.
The medium-range order of phospho-silicate bioactive glasses (with compositions (2 ? p)SiO2 · 1Na2O · 1.1CaO · pP2O5, in which p = 0.10, 0.20, 0.26) has been studied by means of a combined-experimental (MAS-NMR, chemical durability measurements) and computational (classical molecular dynamics (MD)) approach. The structural model obtained by MD is showed to be helpful in the interpretation of the NMR spectra. A small amount of Si–O–P link units has been detected in glasses with low P2O5-content, but at high P2O5 concentration the percentage of Si–O–P bridges becomes important. However, Qn distributions show that the HP5 (p = 0.20) glass structure is less polymerized with respect to the H (p = 0.10) and HP6.5 (p = 0.26) glasses. These results provide useful explanation of the behavior of these glasses in water and highlight the influence of the medium-range order on a very important property of potential bioactive glasses such as the chemical durability.  相似文献   

10.
《Journal of Non》2006,352(32-35):3502-3507
This study compares the release of tetracycline and propolis incorporated into four silica-based bioactive glassy systems. The bioactive glasses, with composition (SiO2)x(P2O5)y(CaO)z, were prepared using a sol–gel process at room temperature. Tetraethoxysilane (TEOS), triethylphosphate, and calcium chloride were used as Si, P, and Ca precursors, respectively. The quantities of tetracycline and propolis incorporated were 2% in weight. For delivery assays, the samples were individually immersed in deionized water and buffered with tris-hydroxymethyl amino methane, pH 7.4, and kept in water bath (37 °C) for thirty days. Aliquots were withdrawn and analyzed by ultraviolet spectrophotometry in the tetracycline (270 nm) and propolis (420 nm) wavelengths. For the glass–tetracycline compounds, it was observed that four days after release had started all samples had released about 90% of the total tetracycline concentration. In contrast, 90% of the propolis was released in about 30 days’ time. Sample characterization was made using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopic (FTIR), and thermogravimetry (TG).  相似文献   

11.
This report details the physical properties, bioactivity and biocompatibility of manufactured glasses containing a range of calcium fluoride (CaF2) concentrations. Compositions were based on the following system: SiO2, CaO, Na2O, K2O, P2O5, ZnO and MgO, and in total seven glasses were synthesized using a melt–quench route. The ratio of the base compounds was kept constant, but had increasing CaF2 concentrations (0.00, 2.44, 4.77, 9.11, 10.33, 11.53 and 13.00 mol%). Glasses were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and dilatometery. Density was quantified according to Archimedes method and apatite formation tested following immersion in simulated body fluid (SBF) and Tris-buffer solution. Glass coatings were prepared by enamelling technique using 10 mm in diameter pure titanium disks. XRD demonstrates that all glasses are amorphous and that the sintering window, glass transition and softening temperatures decrease with increasing CaF2 content. In contrast, thermal expansion coefficient and glass density increase with CaF2 content. After 1 week immersion in SBF and Tris, XRD and Fourier transform infrared (FTIR) spectroscopy showed that the surfaces of all glasses underwent structural changes with evidence of surface apatite formation. Fluoride-electrode analysis indicates that the amount of fluoride released was proportional to the original CaF2 content. The survival and growth of osteoblasts on the surface of these glasses is consistent with biocompatible characteristics.  相似文献   

12.
Borate glass particles and microspheres with size distributions in the range of approximately 100–400 μm, were loosely compacted and sintered for 10 min at 600 °C to form a porous, three-dimensional construct (porosity 25–40%). Conversion of the borate glass to hydroxyapatite was investigated by soaking the constructs in a solution of K2HPO4 (0.25 M) at 37 °C and with a pH value of 9.0, and measuring the weight loss of the constructs as a function of time. Almost full conversion of the borate glass to hydroxyapatite was achieved in less than 6 days. X-ray diffraction revealed an initially amorphous product that subsequently crystallized to hydroxyapatite. The biocompatibility of the porous constructs was investigated by in vitro cell culture with human mesenchymal stem cells derived from bone marrow (bMSC) and human mesenchymal stem cell derived osteoblasts (MSC-Ob). The cells adhered to the scaffolds and the MSC-Obs produced alkaline phosphatase which is an indication of osteogenic differentiation. The data suggest strong bioactive characteristics for the borate glass constructs and the potential use of the constructs as scaffolds for tissue engineering of bone.  相似文献   

13.
《Journal of Non》2006,352(32-35):3739-3743
Niobium phosphate glasses with composition 33P2O5 · 27K2O · 40Nb2O5 are usually very stable with regard to crystallization resistance, with a relatively high glass transition temperature (Tg  750 °C), and are potentially suitable for nuclear waste immobilization. Porous niobium phosphate glasses were prepared by the replication method. The porous glasses were produced via the dip-coating of an aqueous slurry containing 20 wt% powdered glass into commercial polyurethane foams. The infiltrated foams were oxidized at 600 °C for 30 min to decompose the polymeric chains and to burn out the carbon, leading to a fragile glass skeleton. Subsequent heating above the glass transition temperature in the range of 780–790 °C for 1 h, finally resulted in mechanically stable glass foams, which maintained the original interconnected pore structure of the polyurethane foam. The struts showed the neck formation between particles, evidencing the initial stage of sintering. The open and interconnected porosity of the glassy foams lies in the range of 85–90 vol.%. It was concluded that porous niobium phosphate glasses are potential candidates for immobilizing liquid nuclear waste.  相似文献   

14.
Bioactive glass ceramics (BGCs) have different rates of biodegradation and mechanical properties depending on their chemical compositions and sintering temperatures. The present study was aimed to develop the boron-rich, phosphorus-low CaO–SiO2–P2O5–B2O3 bioactive glasses (BG-Bx, X = 0, 10, 20) potentially for improving the mechanical properties of BGCs via low-temperature co-fired process. The B2O3-free BG-B0 shrunk well at ~ 726 °C and melted at over 1050 °C, while the onset shrinking and melting temperatures of the 20 mol% B2O3-doped BG-B20 was lowered to ~ 648 °C and ~ 952 °C, respectively. The BG-B20 thermally treated at 850–950 °C was transformed into wollastonite and calcium borate, and crystallization decreased the kinetics but did not inhibit the development of hydroxyapatite on their powder and disc surface when immersed in simulated body fluid. The in vitro degradation in Tris buffer confirmed that the degradation rate markedly increased with increasing boron content in BG-Bx. The compressive strength and flexural strength of the 10% BG-B20-reinforced 45S5 porous BGC sintered at 850 °C was nearly four times than that of 45S5 porous constructs. These studies suggest that the boron-rich, phosphorus-low CaO–SiO2–P2O5–B2O3 system is a promising biomaterial and potential low temperature co-fired aid for improving the mechanical and biological properties of porous BGCs.  相似文献   

15.
《Journal of Non》2006,352(28-29):3088-3094
Bulk binary ZnO–P2O5 glasses with 50–70 mol% ZnO were immersed in distilled water at 30–90 °C for up to 72 h. The immersed samples were characterized by weight loss, the change in solution pH, X-ray diffraction (XRD) analysis, scanning electron microscopy and Raman spectroscopy. Weight loss decreased with ZnO concentration for all immersion temperatures. Dissolution behavior was classified into two types in terms of weight loss and macroscopic appearance. Type I was primarily recognized in 50–60 mol% ZnO glasses. In type I, the weight loss for 72 h was relatively large (>1.0 × 10−7 kg mm−2, >10% of initial sample weight). Raman spectra of the type I glasses indicated that the depolymerization of phosphate glass network occurred during the dissolution process. Crystalline Zn2P2O7 · 3H2O was precipitated in the water solution after immersion. Type II dissolution behavior was recognized in the 65 and 70 mol% ZnO glasses except for the 65ZnO–35P2O5 glass immersed at 90 °C. In the type II behavior, the weight loss for 72 h was relatively-small (<1.0 × 10−8 kg mm−2, <1% of initial sample weight). The microstructure of the type II glass indicated selective dissolution. The dissolution process of the type II glass is discussed.  相似文献   

16.
The crystallization behavior of 30Na2O–25Nb2O5–(45 ? x) SiO2–xAlO1.5 (x = 0, 2.5, and 5) (mol%) glasses was examined and the effect of Al2O3 addition on the formation of perovskite-type NaNbO3 crystals was clarified. It is found from X-ray diffraction analyses and transmission electron microscope observations that NaNbO3 nanocrystals are formed in all glasses and the size of NaNbO3 crystals decreases with the substitution of Al2O3 for SiO2. A crystallized (heat-treated at 684 °C for 5 h) glass with x = 5, which contains NaNbO3 nanocrystals with an average size of 50 nm, shows good optical transparency in the wavelength region of 500–2000 nm and a small hysteresis loop in the polarization–electric field curve. The lines containing NaNbO3 crystals were patterned on the surface of NiO-doped glass with x = 5 by irradiations (power: 1.3–1.4 W, scanning speed: 10 μm/s) of Yb:YVO4 fiber laser (wavelength: 1080 nm). The formation mechanism of NaNbO3 nanocrystals in aluminosilicate glasses was also discussed.  相似文献   

17.
《Journal of Non》2007,353(16-17):1657-1661
A novel poly(butadiene-b-ethylene oxide) (PB-PEO) block copolymer was employed as the structure-directing agent for the preparation of large-pore, mesoporous for zirconia with two-dimensional (2D) hexagonal (p6mm) mesostructure through evaporation-induced self-assembly (EISA) approach. The presented materials, calcined at 400 °C and 500 °C, were characterized in detail by X-ray diffraction, transmission electron microscopy, and nitrogen sorption. The results showed that the mesoporous zirconia possesses a large-pore diameter, high BET surface area, and large-porosity. A probable formation mechanism was also presented in this work.  相似文献   

18.
Characterization of B2O3 and/or WO3 containing tellurite glasses was realized in the 0.80TeO2–(0.20 ? x)WO3 ? xB2O3 system (0  x  0.20 in molar ratio) by using differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectrometry techniques. Glasses were prepared with a conventional melt-quenching technique at 750 °C. To recognize the thermal behavior of the glasses, glass transition and crystallization temperatures, glass stability value, glass transition activation energy, fragility parameter were calculated from the thermal analyses. Density, molar volume, oxygen molar volume and oxygen packing density values were determined to investigate the physical properties of glasses. Fourier transform infrared spectra were interpreted in terms of the structural transformations on the glass network, according to the changing B2O3 and/or WO3 content. Crystallization behavior of the glasses was investigated by in situ X-ray diffraction measurements and microstructural characterization was realized by scanning electron microscopy and energy dispersive X-ray spectrometry analyses.  相似文献   

19.
Jincheng Du  Ye Xiang 《Journal of Non》2012,358(8):1059-1071
Strontium ions can promote bone growth and enhance bioactivity in bioactive glasses that find critical biomedical applications. In this paper, the effect of SrO/CaO substitution on the structure, ionic diffusion, and dynamic properties of 45S5 bioactive glasses has been studied using constant pressure molecular dynamics simulations with a set of effective partial charge potentials. The simulated structure models were validated by comparing with experimental neutron diffraction results. It was found that the SrO/CaO substitution leads to an increase of glass density and decrease of oxygen density, a measure of compactness of the glass, in excellent agreement with available experimental data. On the other hand, the substitution does not significantly change of the medium range glass structures as characterized by silicon and phosphorous Qn distributions, network connectivity, and ring size distributions. The diffusion and dynamic behavior of these glasses and their melts were also determined by calculating the mean square displacements and velocity autocorrelation functions. It was found that the diffusion energy barriers of sodium, calcium and strontium ions remain nearly constant with respect to the level of substitution. However, strontium ions do influence the diffusion behaviors of calcium and sodium ions at high temperature, as evidenced from their velocity autocorrelation functions. Like calcium and sodium, strontium ions only contribute to the lower frequency (around 100 cm? 1) of the vibrational spectra the substitution has little effect on high frequency features and the general shape of the vibrational density of states. These results suggest that the increase of the dissolution rate in strontium containing glasses are mainly due to the increase of free volume and the non-local effect that weakens the silicon-oxygen network due to strontium ions.  相似文献   

20.
B. Mirhadi  B. Mehdikhani 《Journal of Non》2011,357(22-23):3711-3716
The effects of chromium oxide on the crystallization behavior of glass compositions in the calcium, zirconium and silicon oxides system were investigated by differential thermal analysis, X-ray diffraction and scanning electron microscopic. Results indicate that crystallization is predominantly controlled by a surface nucleation mechanism, even though a partial bulk nucleation has been encountered in compositions containing more than 1.0 mol% of doping oxide. The effect of heating rate on differential thermal analysis curves was studied in order to investigate nucleation mechanisms and to extract the corresponding crystal growth activation energies Ec for the different crystalline phases. Activation energy (Ec) was found to be 490 ± 5 kJ/mol for 5.0 mol% chromium oxide in glasses. The most suitable nucleation temperature was determined as 810 °C for the above mentioned glass. The results of this study have highlighted that a small percentage of chromium oxide strongly affects the crystal formation thereby reducing the time and temperature of the thermal treatment and enhancing the degree of crystallization of calcium, zirconium and silicon oxides glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号