首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 10 毫秒
1.
The 70Li2S · (30 ? x)P2S5 · xP2O5 (mol%) oxysulfide glasses were prepared by the melt quenching method. The glasses were prepared in the composition range 0  x 10. The glass–ceramics were prepared by heating the glasses over crystallization temperatures. The POnS3?n (n = 1–3) oxysulfide units were produced in the glasses and glass–ceramics by partial substituting P2O5 for P2S5. In particular, the P2OS64? unit would be produced by substituting a small amount of P2O5 for P2S5. The oxygen atoms were incorporated into the Li7P3S11 crystal structure because the diffraction peaks of the oxysulfide glass–ceramic shifted to the higher angle side. The glass–ceramic with 3 mol% of P2O5 exhibited the highest conductivity of 3.0 × 10?3 S cm?1 and the lowest activation energy for conduction of 16 kJ mol?1. The P2OS64? dimer units in the oxygen-incorporated Li7P3S11 crystal would improve conductive behavior of the Li2S–P2S5 glass–ceramics.  相似文献   

2.
The mixed glass former effect (MGFE) is defined as the non-linear and non-additive change in the ionic conductivity with changing glass former fraction at constant modifier composition between two binary glass former compositions. In this study, sodium borophosphate glasses, 0.35Na2O + 0.65[xB2O3 + (1 ? x)P2O5] with 0  x  1, have been prepared and their glass transition temperatures (Tg) have been examined as an alternative indicator of the MGFE and as an indicator of changes in the short range order (SRO) structural network units that could cause or contribute to the MGFE. The changes in Tg show a positive non-additive and non-linear trend over the changing glass former fraction, x. The increase in Tg is related to the increasing number of bridging oxygens (BO) in the glass samples, which is caused by the increase in the number of tetrahedral boron, B4, units in the SRO structure.  相似文献   

3.
B.B. Das 《Journal of Non》2009,355(31-33):1663-1665
Synthesis of the xCuO–(1 ? x)Bi2O3 (0.5 ? x ? 0.9) (C1–C5: x = 0.5, 0.6, 0.7, 0.8, 0.9) glasses was done via nitrate–citrate gel route. Glassy phase is ascertained by XRD studies. Magnetic susceptibility results in the range 4.2–400 K show weak paramagnetic nature with exchange integrals ~0.024–0.13 eV in the glasses. The electron paramagnetic resonance (EPR) in the range 4.2–363 K shows g  2.0 and the trend of the g-matrix elements g|| > g > ge for the glasses C1–C5 at 4.2 K are due to the Cu2+ (3d9) paramagnetic site in the glasses which is in a tetragonally elongated octahedron [O1/2–CuO4/2–O1/2] having D4h symmetry. IR spectroscopic results show the presence of octahedron [BiO6/2]3? and [CuO6/2]4? units and pyramidal [BiO2/2O]? unit in the glasses.  相似文献   

4.
The evolution of topology and chemical order along the AsxGexSe1 ? 2x composition-line within the As–Ge–Se glass-forming region is studied by high-resolution X-ray photoelectron spectroscopy. It is shown that cation–cation bond formation becomes a dominant process for the compositions with x > 0.09. The results explain the peculiarities observed around this composition recently in the temperature-modulated differential scanning calorimetry data. Substitution of two selenium atoms within constituent structural units (pyramids and/or tetrahedra) by corresponding cations explains a second peculiarity point at x > 0.16 compositions observed recently with the above technique. The present observations show segregation of As and then Ge at high concentrations of cations in the system (x > 0.20).  相似文献   

5.
The mixed glass former effect (MGFE) is defined as a non-linear and non-additive change in the ionic conductivity with changing glass former fraction at constant modifier composition between two binary glass forming compositions. In this study, mixed glass former (MGF) sodium borophosphate glasses, 0.35 Na2O + 0.65 [xB2O3 + (1 ? x)P2O5], 0  x  1, which have been shown to have a strong positive MGFE, have been prepared and their physical properties, density and molar volume, have been examined as predictors of structural change. The density exhibits a strong positive non-linear and non-additive change in the density with x and a corresponding negative non-linear and non-additive change in the molar volume. In order to understand the structural origins of these changes, a model of the molar volume was created and best-fit to the experimentally determined molar volumes in order to determine the volumes of the short range order (SRO) structural units in these glasses, how these volume change from the molar volumes of the binary glasses, and how these volumes change across the range of x in the ternary glasses. The best-fit model was defined as the model that required the smallest changes in the volumes of the ternary phosphate and borate SRO structural groups from their values determined by the densities of the binary sodium phosphate and sodium borate glasses. In this best-fit molar volume model, it was found that the volumes of the various phosphate and borate SRO structural groups decreased by values ranging from a minimum value of ~ 1% for x = 0.1 and 0.9 to a maximum value of ~ 6% for the phosphate and ~ 9% for the borate SRO groups at the minimum in molar volume at x = 0.4. The free volume was found to have a negative deviation from linear which is unexpected given the positive deviation in ionic conductivity.  相似文献   

6.
Bulk glasses of a-Se75Te25 ? xGax (x = 0, 5, 10 and 15 at wt %) have been prepared by melt quenching technique. These samples were structurally characterized by using X-ray diffraction. Kinetic of crystallization in these glasses was studied under non-isothermal conditions using differential thermal analysis (DTA). DTA is performed at different heating rates of 5, 10, 15, 20 and 30 °C/min. The values of glass transition (Tg) and crystallization peak temperature (Tp) are found to be composition and heating-rate dependent. The obtained results have been analyzed in terms of activation energy of glass transition (Eg) using Kissinger's and Mahadevan et al. relations. Values of Eg obtained by the two relations are in agreement with each other. The results indicate that the crystallization process is a three-dimensional growth.  相似文献   

7.
8.
Amorphous YxCe50 ? xCu42Al8 (0  x  50) ribbons prepared by melt-spinning on the Cu wheel were subjected to X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and to the measurements of magnetization and resistivity in the temperature range from 1.7 to 300 K. Effective activation energies, characteristic crystallization temperatures and enthalpies of as-quenched alloys have been determined. Two stages of crystallization have been observed in most samples (except shallow effects in Ce50Cu42Al8). The activation energies have been calculated from the Kissinger relation to be 247 ± 18 and 570 ± 56 kJ/mol for Y25Ce25Cu42Al8 and Y50Cu42Al8, respectively. The absence of the endothermic effect for x = 50, usually associated with a glass transition, below the primary crystallization event, indicates the presence of dispersed polyamorphous packing with a wide range of local glass transitions. The magnetization versus temperature plot for Y25Ce25Cu42Al8 points to a magnetic ordering at temperatures considerably below 50 K. This observation has been confirmed by the temperature dependence of resistivity, which exhibits a singularity at the same temperature. Moreover, a negative temperature coefficient of resistivity, characteristic of disordered systems, was observed. The electrical resistivity in the Y25Ce25Cu42Al8 amorphous alloy is governed by the weak localization of electrons.  相似文献   

9.
Interactions in the La1?xNdxNi3.5Al1.52 (x = 0.1 and 0.2) system was studied from room temperature up to 950 °C at the initial hydrogen pressure of 5 MPa through differential thermal (DTA) and X-ray phase analyses. Heating two-phase alloys (x = 0.1 and 0.2) in hydrogen results in their disproportionation (at 530 and 560 °С, respectively) and the formation of NiAl and unidentified amorphous products. The single-phase La0.9Nd0.1Ni3.5Al1.5 alloy decomposes in hydrogen at 900 °С into a hydride of rare-earth metals and an Ni3Al intermetallic; traces of NiAl and hydride of a phase of the CaCu5-type structure have also been observed. Heating the disproportionated samples in vacuum to 520–550 °С leads to their recombination into a homogenized phase with a CaCu5-type structure. In other words, the increase of neodymium content shifts the reaction equilibrium of La1?xNdxNi3.5Al1.5 alloys with hydrogen towards recombination.  相似文献   

10.
11.
Photosensitivity of SiO2–Al and SiO2–Na glass samples was probed by means of the induced optical absorption and luminescence as well as by electron spin-resonance (ESR) after irradiation with excimer-laser photons (ArF, 193 nm). Permanent visible darkening in the case of SiO2–Al and transient, life time about one hour, visible darkening in the case of SiO2–Na was found under irradiation at 290 K. No darkening was observed at 80 K for either kind of material. This investigation is dedicated to revealing the electronic processes responsible for photosensitivity at 290 and 80 K. The photosensitivity of both materials is related to impurity defects excited directly in the case of SiO2–Na and/or by recapture of self-trapped holes, which become mobile at high temperature in the case of SiO2–Al. Electrons remain trapped on the localized states formed by oxygen deficient defects.  相似文献   

12.
M.R. Sahar  K. Sulhadi  M.S. Rohani 《Journal of Non》2008,354(12-13):1179-1181
Er3+-doped tellurite glasses of the (80 ? x)TeO2–20ZnO–(x)Er2O3 system (0.5 mol% ? x ? 2.5 mol%) have successfully been made by melt-quenching technique and their structure has been investigated by means of DTA and Raman spectroscopy. The DTA results show the thermal parameters; such as the glass transition temperature (Tg) and crystallization temperature (Tc) were determined. It is found that this system provides a stable and wide glass formation range in which the glass stability around 99–140 °C may be obtained. The Raman spectroscopy used the structural studies in the glass system. Two Raman shift peaks were observed around 640–670 cm?1 and 720–740 cm?1, which correspond to the stretching vibration mode of TeO4 tbp and TeO3 tp, respectively. It is found that the spectral shift in Raman spectra is depending on the Er2O3 content. This evolution is an indication of the changes in the basic unit of the glass structure.  相似文献   

13.
DC resistivity, thermopower and optical absorption of xV2O5–(1 ? x) As2O3 (0.58  x  0.93) glasses have been studied as a function of composition. The transport mechanism in these glasses has been identified to be a combination of hopping of small polarons between V4+ and V5+ sites and small bipolarons between As3+ and As5+ sites respectively. Electrical conductivity is found to be more of a function of vanadium content than arsenic concentration in the glasses, indicating that the contribution of bipolarons to the conductivity is negligible. Thermopower has also been found to be sensitive to the composition of the glasses. At low vanadium concentrations, the thermopower is negative, which exhibits a sign reversal as vanadium concentration is increased (at x = 0.7). An important feature of these glasses is that the thermopower is not a function of [V5+]/[V4+] ratio, as is normally observed in vanadate glasses, and such a phenomenon suggests that the arsenic ions (bipolarons) in these glasses contribute to the thermal transport phenomena in a significant way.  相似文献   

14.
15.
S. Azianty  A.K. Yahya  M.K. Halimah 《Journal of Non》2012,358(12-13):1562-1568
Ternary tellurite glasses with the chemical formula 80TeO2–(2 ? x)ZnO–xFe2O3 (x = 0–15 mol%) have been prepared by the melt-quenching method. Elastic and structural properties of the glasses were investigated by measuring both longitudinal and shear velocities using the pulse-echo overlap method at 5 MHz and Fourier transform infrared (FTIR) spectroscopy, respectively. Both longitudinal and shear velocity showed a large increase of 3.40% and 4.68%, respectively, at x = 5 mol% before a smaller increase for x > 5 mol%. Interestingly, longitudinal modulus (L), shear modulus (G), bulk modulus (K) and Young's modulus (E) recorded similar trends with increase in Fe2O3. The initial large increases in shear and longitudinal velocity and related elastic moduli observed at x = 5 mol% are suggested to be due to structural modification which enhances rigidity of the glass network. FTIR analysis showed increase in bridging oxygen (BO) as indicated by the relative intensity of the TeO4 assigned peaks and increase in intensity of the FeO6 assigned peak (~ 451 cm? 1) which indicates that Fe acts as a modifier in the glass network. The increase in rigidity of the glass system is suggested to be due to the increase of BO together with the formation of strong covalent FeO bond. Quantitative analysis based on the bulk compression and ring deformation models showed that the kbc/kexp value decreased gradually from 2.41 (x = 0 mol%) to 2.02 (x = 15 mol%) which infers that the glass system became a relatively more open 3D network as Fe2O3 was increased.  相似文献   

16.
Crystallography Reports - K2Ni(SO4)2 · 6H2O (KNSH), K2Co(SO4)2 · 6H2O (KCSH), and K2NixCo(1 – x)(SO4)2 · 6H2O (KCNSH) crystals have been grown by traditional...  相似文献   

17.
Crystallography Reports - The structural features of the phases formed during crystallization of mixed copper and nickel complexes with nitrilotris(methylenephosphonic acid)...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号