共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of chemical thermodynamics》2007,39(2):322-334
In this work, dynamic viscosities, densities, and speed of sound have been measured over the whole composition range and 0.1 MPa for the binary mixtures (cyclopentane and cyclohexane with ethanol, 1-propanol, and 1-butanol) at several temperatures (293.15, 298.15, 303.15) K along with the properties of the pure components. Excess molar volumes, molar isentropic compression, excess molar isentropic compression, and excess free energy of activation for the binary systems at the above mentioned temperatures, were calculated and fitted to the Redlich–Kister equation to determine the fitting parameters and the root-mean-square deviations. The UNIQUAC equation was used to correlate the experimental viscosity data. The UNIFAC-VISCO method and ASOG-VISCO method, based on contribution groups, were used to predict the dynamic viscosities of the binary mixtures. The interaction parameters of cycloalkanes with primary alcohol (CHcy/-OH) have been determined for their application in the predictive UNIFAC-VISCO method. 相似文献
2.
Mehdi Hasan Arun B. Sawant Rajashri B. Sawant Pratibha G. Loke 《The Journal of chemical thermodynamics》2011,43(9):1389-1394
Densities, viscosities, speed of sound, and IR spectroscopy of binary mixtures of tert-butyl acetate (TBA) with benzene, methylbenzene, and ethylbenzene have been measured over the entire range of composition, at (298.15 and 308.15) K and at atmospheric pressure. From the experimental values of density, viscosity, speed of sound, and IR spectroscopy; excess molar volumes VE, deviations in viscosity Δη, deviations in isentropic compressibility Δκs and stretching frequency ν have been calculated. The excess molar volumes and deviations in isentropic compressibility are positive for the binaries studied over the whole composition, while deviations in viscosities are negative for the binary mixtures. The excess molar volumes, deviations in viscosity, and deviations in isentropic compressibility have been fitted to the Redlich–Kister polynomial equation. The Jouyban–Acree model is used to correlate the experimental values of density, viscosity, and speed of sound. 相似文献
3.
《The Journal of chemical thermodynamics》2007,39(9):1325-1330
Viscosities at T = (293.15, 298.15, and 303.15) K in the binary mixtures of ethyl tert-butyl ether with 2-ethoxyethanol, 2-(2-ethoxyethoxy)ethanol, and 2-[2-(2-ethoxyethoxy)ethoxy]ethanol have been measured over the entire range of mixture compositions. From the experimental data, deviations in the viscosity (Δln η) and excess energies of activation for viscous flow (ΔG1E) have been calculated. The viscosity data were correlated with equations of Hind et al., Grunberg and Nissan, Auslaender, and McAllister. The results for Δln η and ΔG1E are discussed in terms of intermolecular interactions and structure of studied binary mixtures. 相似文献
4.
5.
K. Narendra Ch. Srinivasu Sk. Fakruddin P. Narayanamurthy 《The Journal of chemical thermodynamics》2011,43(11):1604-1611
The density, ultrasonic velocity, and viscosity of binary mixtures of (anisaldehyde + o-cresol, or +m-cresol, or +p-cresol) have been measured over the entire range of composition at T = (303.15, 308.15, 313.15, and 318.15) K. Using these data, various thermo-acoustic parameters such as deviation in adiabatic compressibility, Δβ, excess molar volume, VE, viscosity deviation, Δη and excess Gibb’s free energy of activation for viscous flow, ΔG1E have been calculated. The calculated deviation and excess functions have been fitted to the Redlich–Kister polynomial equation. The negative and positive values of deviation or excess thermo-acoustic parameters observed have been explained on the basis of the intermolecular interactions present in these mixtures. 相似文献
6.
7.
《The Journal of chemical thermodynamics》2006,38(1):75-83
Experimental values of density, viscosity, and refractive index at T = (298.15, 303.15, and 308.15) K while the speed of sound at T = 298.15 K in the binary mixtures of methylcyclohexane with n-hexane, n-heptane, n-octane, n-nonane, n-decane, n-dodecane, and iso-octane are presented over the entire mole fraction range of the binary mixtures. Using these data, excess molar volume, deviations in viscosity, molar refraction, speed of sound, and isentropic compressibility are calculated. All the computed quantities are fitted to Redlich and Kister equation to derive the coefficients and estimate the standard error values. Such a study on model calculations in addition to presentation of experimental data on binary mixtures are useful to understand the mixing behaviour of liquids in terms of molecular interactions and orientational order–disorder effects. 相似文献
8.
The density, relative permittivity, viscosity and speed of sound at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K in the binary mixtures of nitromethane with 2-methoxyethanol and 2-butoxyethanol have been measured as a function of composition. From the experimental results, the excess molar volumes VE, excess Gibbs free energy of activation for viscous flow , excess isentropic compressibility and the deviations in the relative permittivity, viscosity, and speed of sound from a mole fraction average have been calculated. The viscosity data, at T = 298.15 K, were correlated with equations of Hind et al., Grunberg and Nissan, Frenkel, and McAllister. The results are discussed in terms of intermolecular interactions and structure of studied binary mixtures. 相似文献
9.
《The Journal of chemical thermodynamics》2006,38(4):434-442
Physico-chemical properties viz., density, viscosity, and refractive index at temperatures = (298.15, 303.15, and 308.15) K and the speed of sound at T = 298.15 K are measured for the binary mixtures of methylcyclohexane with ethanol, propan1-ol, propan-2-ol, butan-1-ol, 2-methyl-1-propanol, and 3-methyl-1-butanol over the entire range of mixture composition. From these data, excess molar volume, deviations in viscosity, molar refraction, speed of sound, and isentropic compressibility have been calculated. These results are fitted to the polynomial equation to derive the coefficients and standard errors. The experimental and calculated quantities are used to study the nature of mixing behaviours between the mixture components. 相似文献
10.
Densities, viscosities, and ultrasonic velocities of binary mixtures of trichloromethane with methanol, ethanol, propan-1-ol, and butan-1-ol have been measured over the entire range of composition, at (298.15 and 308.15) K and at atmospheric pressure. From the experimental values of density, viscosity, and ultrasonic velocity, the excess molar volumes (VE), deviations in viscosity (Δη), and deviations in isentropic compressibility (Δκs) have been calculated. The excess molar volumes, deviations in viscosity and deviations in isentropic compressibility have been fitted to the Redlich-Kister polynomial equation. The Jouyban-Acree model is used to correlate the experimental values of density, viscosity, and ultrasonic velocity. 相似文献
11.
12.
In this paper, excess thermodynamic functions have been computed from the measured values of density, viscosity, and refractive index at T = (298.15, 303.15, and 308.15) K, ultrasonic velocity at T = 298.15 K over the entire mixture composition range of (anisole with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, pentan-1-ol, or 3-methyl butan-1-ol). Excess molar volume, VE has been calculated from densities, whereas deviations in viscosity, Δη, were computed from the measured viscosities. From ultrasonic velocities, isentropic compressibilities were calculated, from which deviations in isentropic compressibility, Δks have been computed. Lorenz-Lorentz mixture rule was used to compute molar refractivity, R from refractivity index data and from these data, deviations in molar refractivity, ΔR have been computed. Computed thermodynamic quantities have been fitted to Redlich and Kister polynomial equation to derive the coefficients and standard errors between experimental and predicted quantities. Intermolecular interactions between anisole and alkanols have been studied based on the computed excess thermodynamic quantities. 相似文献
13.
14.
Noelia Calvar Elena Gómez Begoña González Ángeles Domínguez 《The Journal of chemical thermodynamics》2009,41(8):939-944
Densities, speeds of sound, and refractive indices of 12 binary systems of alkanes (hexane, heptane, octane, and nonane) with aromatics (benzene, or toluene, or ethylbenzene) at T = 313.15 K and at atmospheric pressure were determined over the whole composition range, and are presented in this paper. From the experimental results, the derived and excess properties (isentropic compressibility, excess molar volumes, and excess molar isentropic compressibility) at T = 313.15 K were calculated and satisfactorily fitted to the Redlich–Kister equation. 相似文献
15.
《The Journal of chemical thermodynamics》2006,38(8):975-982
Densities ρ, dynamic viscosities η, for binary mixtures of toluene with some n-alkanes, namely, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane have been measured over the complete composition range. Excess molar volumes VE, viscosity deviations Δη, and excess Gibbs free energy of activation ΔG1E, were calculated there from and were correlated by Redlich–Kister type function in terms of mole fractions. For mixtures of toluene with n-pentane and n-hexane the VE is negative and for the remaining systems is positive. The Δη values are negative for all the studied mixtures. The ΔG1E values shows the positive values for the binary mixtures with n-decane, whereas the negative values have been observed for all the remaining binary mixtures. From the results, the excess thermal expansivities at constant pressure αE, is also estimated. The Prigogine–Flory–Patterson (PFP) theory and its applicability in predicting VE is tested. The results obtained for viscosity of binary mixtures were used to test the semi-empirical relations of Grunberg and Nissan, Tamura and Kurata, Hind et al., Katti and Chaudhri, McAllister, Heric, Kendall, and Monroe. The experimental on the constituted binaries are analyzed to discus the nature and strength of intermolecular interactions in these mixtures. 相似文献
16.
《The Journal of chemical thermodynamics》2006,38(10):1172-1185
Viscosities, densities, and speed of sound have been measured over the whole composition range for (methylcyclopentane with ethanol, 1-propanol, 1-butanol, 2-propanol, 2-butanol, and 2-pentanol) at T = (293.15, 298.15, and 303.15) K and atmospheric pressure along with the properties of the pure components. Excess molar volumes, isentropic compressibility, deviations in isentropic compressibility, and viscosity deviations for the binary systems at the above-mentioned temperatures were calculated and fitted to Redlich–Kister equation to determine the fitting parameters and the root-mean square deviations. UNIQUAC equation was used to correlate the experimental data. Dynamic viscosities of the binary mixtures have been predicted using UNIFAC-VISCO and ASOG-VISCO methods. 相似文献
17.
In this work, we present the experimental measurements of excess molar enthalpies for the binary systems of dibutyl ether with different isomers of pentanol: 1-pentanol, 2-pentanol, 3-pentanol, 3-methyl-2-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-methyl-2-butanol; all of them at T = (298.15 and 308.15) K and atmospheric pressure. Our goal was to determine the influence of the OH-group position on the different isomers of pentanol in the excess molar enthalpies of the binary systems studied. For this purpose we have analysed their experimental effective-reduced dipole moments. All values of excess molar enthalpies for the mixtures studied are positive whereas the results obtained for the effective-reduced dipole moments of the isomers of pentanol are similar. 相似文献
18.
19.
20.
Excess molar enthalpies (HE) of binary mixtures of 2-decanone or dipentyl ether with n-alkanes, including n-dodecane, n-tetradecane, and n-hexadecane, were measured with an isothermal titration calorimeter (ITC) at T = 298.15 K under atmospheric pressure. All the measured HE values are positive over the entire range of composition, indicating that all these mixing processes are endothermic. The HE values varying with composition are found to be nearly symmetric for each binary system. It was also shown that the HE values follow the order of n-hexadecane > n-tetradecane > n-dodecane at a given composition in either the 2-decanone or dipentyl ether binary systems. An empirical Redlich–Kister equation correlated quantitatively these new HE data. The Peng–Robinson and the Patel–Teja equations of state, and the NRTL model were also applied to fit the HE results. Among these tested correlative models, the Patel–Teja equation of state with two adjustable binary interaction parameters generally yielded the best representation. 相似文献