首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman scattering spectra of Ga2S3–2MCl (M = K, Rb, Cs) glasses have been conducted at room temperature. Based on the analysis of the local co-ordination surroundings of Cs+ ions, the similarities and differences of Raman spectra for the glass Ga2S3–2CsCl and the bridged molecular GaCl3 were explained successfully. Through considering the effect of M+ ions on mixed anion units [GaS4?xClx] and bridged units [Ga2S6?xClx] and the corresponding microstructural model, the Raman spectral evolution of the Ga2S3–2MCl (M = K, Rb, Cs) glasses was reasonably elucidated.  相似文献   

2.
J. Ozdanova  H. Ticha  L. Tichy 《Journal of Non》2009,355(45-47):2318-2322
The glasses representing (Bi2O3)x(WO3)y(TeO2)100?x?y and (PbO)x(WO3)y(TeO2)100?x?y systems were prepared. The dilatometric glass-transition temperatures of examined glass samples were found in the region 383–434 °C, the coefficient of thermal expansion varied from 12 to 16 ppm/°C and the density ranged from 6.302 to 6.808 g/cm3. From the optical transmission measurements of thin glassy bulk samples prepared by a glass blowing, the optical gap values were found in the narrow region 3.21–3.36 eV. For the temperature interval 300–480 K, the values of the temperature coefficient of the optical band gap varied from 3.7 × 10?4 to 5.24 × 10?4 eV/K. It is suggested that Raman feature observed at around 350 cm?1 can be assigned to an overlap of Raman bands attributed to WO6 corner shared octahedra and to the following three atomic linkages: Bi–O–Te, Pb–O–Te and W–O–Te.  相似文献   

3.
M.R. Sahar  K. Sulhadi  M.S. Rohani 《Journal of Non》2008,354(12-13):1179-1181
Er3+-doped tellurite glasses of the (80 ? x)TeO2–20ZnO–(x)Er2O3 system (0.5 mol% ? x ? 2.5 mol%) have successfully been made by melt-quenching technique and their structure has been investigated by means of DTA and Raman spectroscopy. The DTA results show the thermal parameters; such as the glass transition temperature (Tg) and crystallization temperature (Tc) were determined. It is found that this system provides a stable and wide glass formation range in which the glass stability around 99–140 °C may be obtained. The Raman spectroscopy used the structural studies in the glass system. Two Raman shift peaks were observed around 640–670 cm?1 and 720–740 cm?1, which correspond to the stretching vibration mode of TeO4 tbp and TeO3 tp, respectively. It is found that the spectral shift in Raman spectra is depending on the Er2O3 content. This evolution is an indication of the changes in the basic unit of the glass structure.  相似文献   

4.
We report the results of a systematic study of the thermal and optical properties of a new family of tellurite glasses, TeO2–ZnO–BaO (TZBa), as a function of the barium oxide mole fraction and compare them with those of TeO2–ZnO–Na2O (TZN). The characteristic temperatures of this new glass family (glass transition, Tg, crystallization, Tx, and melting, Tm) increase significantly with BaO content and the glasses are more thermally stable (greater ΔT = Tx ? Tg) than TZN glasses. Relative to these, Raman gain coefficient of the TZBa glasses also increases by approximately 40% as well as the Raman shift from ~ 680 cm? 1 to ~ 770 cm? 1. The latter shift is due to the modification of the glass with the creation of non-bridging oxygen ions in the glass network. Raman spectroscopy allows us to monitor the changes in the glass network resulting from the introduction of BaO.  相似文献   

5.
《Journal of Non》2007,353(18-21):1875-1881
A series of glasses in the (Ge,Si)O2–Nb2O5–(Na,K)2O system were prepared by melting and casting. Their density and characteristic temperatures were determined by Differential Thermal Analysis (DTA) and their structure was analyzed by infrared and polarized Raman spectroscopies. DTA data have indicated an increased glass thermal stability with the replacement of GeO2 by SiO2. Kramers–Kronig analysis of the infrared specular reflectance data indicated a strong ionic character for the germanosilicate glasses. The Raman spectra of germanosilicate compositions were generally dominated by an intense Boson peak at ∼72 cm−1 and a high frequency, polarised peak at ∼880 cm−1, related to NbO6 octahedra with at least one non-bridging oxygen. The germanosilicate structure appears to be formed by alternating GeO4 tetrahedra and NbO6 octahedra, in addition to SiO4 tetrahedra.  相似文献   

6.
We investigated the phase diagrams of the Cu2ZnSnS4 (CZTS)–Sn pseudobinary system in order to obtain knowledge useful for the growth of high-quality CZTS single crystals using a solution-based method. For Sn solutions saturated with less than ~60 mol% CZTS, the solutes are separated into two phases (CZTS phase+SnSx phase+liquid phase). On the other hand, for solutions with more than 60 mol% CZTS, the solutes are single phase (CZTS phase+liquid phase). The CZTS single crystals were obtained from a 70 mol% CZTS solution (liquid temperature 850 °C) at 900 °C. The powder X-ray diffraction (XRD) pattern of the CZTS single crystal shows preferred orientations of (112), (220) and (312) planes, confirming the Kesterite structure of CZTS. The Raman spectrum shows three peaks at 287, 338, 371 cm?1, which corresponded to CZTS peaks. The composition of the CZTS single crystal along the growth direction is found to be slightly Cu-poor, Zn-rich and S-rich. Therefore, it is assumed that the Cu vacancy is the dominant p-type conduction mechanism.  相似文献   

7.
Bao-chen Lu  Jian Xu 《Journal of Non》2008,354(52-54):5425-5431
Glass-forming ability (GFA) of Ti–Ni–Sn ternary alloys was investigated. Applying recent models based on atomic size ratio and efficient packing, the composition favoring the glass formation is predicted. Our experiments indicate that the optimized glass-forming composition is located at Ti56Ni38Sn6, with the critical thickness of complete glass formation approaching 100 μm for the melt-spun ribbons. The Ti56Ni38Sn6 metallic glass exhibits a sizable supercooled liquid region (ΔTx) of about 35 K and a reduced glass transition temperature (Trg) of 0.52. We demonstrate that the glass formation of the Ti56Ni38Sn6 alloy correlates with the (L  TiNi + Ti3Sn) pseudo binary eutectic reaction in Ti–Ni–Sn ternary system, which has an invariant temperature and composition at ~1370 K and ~Ti58Ni34Sn8, respectively. With respect to Sn-free Ti–Ni binary alloys, the GFA is enhanced for the Ti–Ni–Sn ternary alloys, but the improvement is limited possibly due to changes in the crystalline phases competing with glass formation.  相似文献   

8.
《Journal of Non》2006,352(52-54):5586-5593
Transparent glasses of the composition M2O–MgO–WO3–P2O5 (M = K, Rb, Cs), corresponding to the crystalline phases of M2MgWO2(PO4)2, have been prepared and studied by Raman and IR spectroscopy as well as DTA. Moreover, the thermally stimulated depolarization and dc conductivity have been measured. The glass transition temperature is 797, 795 and 773 K for the K-, Rb- and Cs-containing glass, respectively. Raman and IR studies have shown that these glasses have very similar structure. The main building blocks are pyrophosphate groups, WO6 octahedra and magnesium–oxygen polyhedra. The dc conduction in these glasses is controlled by hopping of small polarons. The potassium containing glass was shown to be very stable whereas the rubidium and cesium glasses have significantly higher tendency for crystallization and phase separation. It seems, therefore, that the potassium containing glass is a suitable material for the preparation of samples containing non-linear and ferroelectric nanocrystals of the K2MgWO2(PO4)2 phosphate.  相似文献   

9.
Thermal diffusivity (D) at high temperature (T) was measured from 15 samples of commercial SiO2 glasses (types I, II, and III with varying hydroxyl contents) using laser-flash analysis (LFA) to isolate vibrational transport, in order to determine effects of impurities, annealing, and melting. As T increases, Dglass decreases, approaching a constant (~ 0.69 mm2s? 1) above ~ 700 K. From ~ 1000 K to the glass transition, the slope of D is small but variable. Increases of D with T of up to 6% correlate with either low water and/or low fictive temperature and are attributed to removal of strain and defects during annealing. Upon crossing the glass transition, D substantially decreases to 0.46 mm2s? 1 for the anhydrous melt. Hydration decreases Dglass, makes the glass transition occur over wider temperature intervals and at lower T, and promotes nucleation of cristobalite from supercooled melt. Due to the importance of thermal history, a spread in D of about 5% occurs for any given chemical type. Combining prior steady-state, cryogenic data with our average results on type I glass provides thermal conductivity (klat = ρCPD) for type I: klat increases from ~ 0 K, becoming nearly constant above 1500 K, and drops by ~ 30% at Tg. We find that D? 1(T) correlates with thermal expansivity times temperature from ~ 0 K to melting due to both properties arising from anharmonicity.  相似文献   

10.
《Journal of Non》2007,353(13-15):1337-1340
The preparation of mixed glasses of As2S3−xSex (x = 0–3) and (1  y) · As2S3y · Sb2S3 (y = 0–1) has been carried out by an in situ pouring technique. X-ray diffraction (XRD) was used to confirm the glassy nature of the materials and monitor devitrification. Visible-IR transmission, photoluminescence, refractive index and micro-Raman were measured as a function of composition. Microhardness (MH) and thermal expansion coefficient (TEC) were also measured. Raman peaks in As2S3 and As2Se3 were observed around 338 cm−1 and 230 cm−1, respectively in this first composition series in which S was replaced by Se. When As was replaced by Sb, in the case of second composition series, the As2S3 related Raman peak became broader and shifted to lower wave number, reflecting some structural change/devitrification. MH increased (1.31–1.50 GPa) with Se and Sb content while the TEC was found to decrease (2.5–1.4 × 10−5/K). The progressive increase in the content of either Se or Sb in As2S3 is anticipated to modify bond lengths and bond angles. The combined effect of these structural modifications would change the local structure of the glass forming a more rigid glass network thereby increasing the hardness and decreasing TEC.  相似文献   

11.
Transparent SiO2:Li2O:Nb2O5 glass doped with Tm3+ has been prepared by the sol–gel method, and heat-treated in air (HT) at temperatures between 500 and 800 °C. X-ray diffraction (XRD) patterns and Raman spectroscopy show SiO2 and LiNbO3 phases in samples HT above 650 °C, and a NbTmO4 phase for T > 750 °C. The XRD SEM analysis show increasing particle size and number with the increase of HT temperature. Intra-4f12 transitions due to Tm3+ ion dispersed in the matrix are observed in samples with T > 650 °C. The luminescence is dominated by the 1G4  3F4 (~650 nm), 1D2  3F3 (~780 nm), 3H4  3H6 (~800 nm), 3H5  3H6 (~1200 nm) and 3H4  3F4 (~1500 nm) transitions under resonant excitation to the ion levels.  相似文献   

12.
Photo-induced crystallization of a-Se is investigated by Raman spectroscopy as a function of temperature (250–340 K) and exposure time in thin-film structures used as targets in high-gain avalanche rushing photoconductor (HARP) video cameras. The Stokes-to-Antistokes ratio is monitored to obtain the local temperature Tloc at the laser spot; fluxes (632 nm) of 17 and 10 W/cm2 are used. We find a rich temperature behavior that reflects the competition of changes in viscosity and strain, and defines four distinct regimes. No photo-crystallization is seen for Tloc below 260 K, nor in a 15 K range around Tg  310 K. For Tloc in the regime 260–302 K the initial rate of crystal growth after onset of photo-crystallization is temperature independent, whereas for Tloc > 318 K the growth rate is thermally enhanced. Our results are in qualitative accord with a theory by Stephens treating the effects of local strain on the secondary growth of crystalline nuclei in a-Se. We conclude that the observed growth rate between 260 and 302 K is driven by local strain, and that relaxation of this strain near Tg suppresses crystal growth until thermally assisted processes accelerate the photo-crystallization at higher temperatures.  相似文献   

13.
《Journal of Non》2007,353(32-40):3053-3056
The change in the amorphous structure of bulk Pd40Ni40P20 glass during structural relaxation was examined by an anomalous X-ray scattering (AXS) experiment with energies near the Ni K-absorption edge. It was confirmed by differential scanning calorimetry that the sample reached a meta-stable state (a fully relaxed state) with an equilibrium free volume concentration after annealing for about 1 × 104 s at 563 K and 4 × 104 s at 557 K just below the glass transition temperature Tg = 567 K. The structural changes on the progression toward a fully relaxed state were examined in samples annealed for 1 × 103 and 2 × 104 s at 563 K (glass A), and for 3.2 × 103, 1 × 104 and 7 × 104 s at 557 K (glass B). The structural analysis revealed that the coordination number of Ni–Ni like atom pairs increased with annealing time and that of Ni–Pd, unlike atom pairs, decreased. Meanwhile, the coordination number NPNi of P–Ni atom pairs and the nearest neighbor distance rPNi did not show a remarkable variation. However, prolonged annealing of 7 × 104 s at 557 K induced a remarkable change in NPNi and rPNi.  相似文献   

14.
Fast ion conducting (FIC) phosphate glasses and glass ceramic composites have gained considerable importance due to their potential applications in the fabrication of solid-state batteries and other electrochemical devices. We, therefore, present an overview on various types of FIC glasses and glass ceramic composites. Silver phosphate glasses doped with different weight percent of lithium chloride (1, 5, 10 and 15 wt.%) were synthesized by melt quenching technique. The Ag2O–P2O5–(15 wt.%) LiCl glass exhibited the maximum electrical conductivity (σ = 8.91 × 10? 5 S cm? 1 at room temperature and 4.16 × 10? 3 S cm? 1 at 200 °C). Using this glass as an amorphous host material, glass–ceramic composites of Ag2O–P2O5–(15 wt.%) LiCl:xAl2O3 (x = 5–50 wt.%) were prepared. The ionic transference number, electrical conductivity, ionic mobility and carrier ion concentration of the synthesized samples were measured. Ag2O–P2O5–(15 wt.%) LiCl:(25 wt.%) Al2O3 composite system exhibited the maximum σ value (σ = 3.32 × 10? 4 S cm? 1 at room temperature and 2.88 × 10? 2 S cm? 1 at 200 °C ). Solid‐state batteries using undoped Ag2O–P2O5 glass, Ag2O–P2O5–(15 wt.%) LiCl glass and glass ceramic composite containing 25 wt.% Al2O3 as electrolytes were fabricated. The open circuit voltage (OCV) values and discharge time of these cells were measured and compared. It is found that the glass ceramic composites show enhanced ionic conduction, better OCV value and discharge characteristics.  相似文献   

15.
《Journal of Non》2005,351(46-48):3610-3618
The structure of potassium niobium silicate glasses in a wide compositional range has been studied by means of Raman and FTIR spectroscopy. The glasses spectra were compared to those of the KNbSi2O7 and K3Nb3O6Si2O7 polycrystalline samples, obtained by crystallization of glasses of the same composition. It was found that the structure of such glasses is formed by SiO4 tetrahedra and distorted NbO6 octahedra. The amount of highly distorted (edge-sharing, non-bridging oxygens) octahedra results essentially unchanged from the glass composition. By contrast, the fraction of octahedra with a lower distortion degree (corner-sharing, bridging oxygens) increases with the Nb2O5 content. Raman and FTIR investigations indicate that during long heat treatments at temperatures near Tg, in the 23K2O · 27Nb2O5 · 50SiO2 glass, a structural change occurs regarding the amorphous matrix with a decrease of the niobium octahedra distortion. This can be related to a segregation process producing niobium rich regions nanometric in size. In the first heat treatment (2 h) the glass remains amorphous while for more prolonged heat treatments, nanocrystals of an unidentified phase are formed. In the same time the changes of the amorphous matrix hinder further crystallization.  相似文献   

16.
Raman spectroscopy is used here as an innovative technique to investigate sulfate content in borosilicate glasses. Using Raman spectroscopy after having heated the material, the evolution of sulfate amounts can be followed as a function of temperature, time and chemical composition of the starting matrix. The accuracy of this technique was verified using electron probe micro analysis (EPMA), on two systems of glasses (SiO2–B2O3–Na2O (SBNa) and SiO2–B2O3–BaO (SBBa)) in order to compare the effect of alkaline or alkaline-earth elements on sulfur speciation and incorporation. To quantitate sulfate content with Raman spectroscopy, the integrated intensity of the sulfate band at 990 cm?1 was scaled to the sum of the integrated bands between 850 and 1250 cm?1, bands that are assigned to Qn silica units. Calibration curves were then determined for different samples. The determination of sulfate contents with Raman spectroscopy analysis is possible with an accuracy of approximately 0.1 wt% depending on the composition of the glass. It mainly allows us to follow sulfate removal during the elaboration process and to establish kinetic curves of sulfate release as a function of the viscosity of the borosilicate glass.  相似文献   

17.
ZnO–B2O3–P2O5 glasses doped with MoO3 were investigated in the series (100?x)[0.5ZnO–0.1B2O3–0.4P2O5]–xMoO3, where bulk glasses were obtained by slow cooling in air within the compositional region of 0 ? x ? 60 mol% MoO3. The incorporation of MoO3 into the parent zinc borophosphate glass results in a weakening of bond strength in the structural network, which induces a decrease in chemical durability and glass transition temperature. Raman spectra reflect the incorporation of molybdate groups into the glass network of the studied glasses by the presence of the polarized vibrational band at ≈976 cm?1 ascribed to the MOx symmetric stretching vibrations and the depolarized band at ≈878 cm?1 ascribed to the Mo–O–Mo stretching vibration. The incorporation of molybdate units into the glass network results in the depolymerization of phosphate chains and the formation of P–O–Mo bonds, as reflected in Raman and 31P NMR spectra. According to the 11B MAS NMR spectra, tetrahedral B(OP)4?x(OMo)x units are formed in the glasses, whereas only a small amount of BO4 units is converted to BO3 units in the MoO3-rich glasses.  相似文献   

18.
Bulk glasses of the series (1 ? x)[0.5K2O–0.1B2O3–0.4P2O5]–xNb2O5 with x = 0–45.7 mol% Nb2O5 were prepared by slow cooling in air and investigated by Raman, 31P, and 11B MAS NMR spectroscopy. The incorporation of Nb2O5 into the parent borophosphate glass results in a substantial increase in the glass transition temperature and chemical durability of glasses. Raman spectra showed that Nb atoms form distorted NbO6 octahedra, which are isolated at low Nb2O5 content, whereas at higher Nb2O5 content they form clusters. 11B NMR spectra of the glasses revealed the interaction between Nb2O5 and BO4 tetrahedral units, which results in a partial transformation of tetrahedral BO4 units to trigonal BO3 units and the formation of mixed B(OP)4?n(ONb)n units.  相似文献   

19.
The impurity content and microhomogeneity of Ge25Sb10S65 glass samples, prepared by direct synthesis from elements, were investigated. It was shown that the increase in temperature of synthesis of the glass-forming melt resulted in the increase of the content of impurities of H, Na, Al, Si, K, Ca and transition metals in the prepared glasses. The glasses from the melt, subjected to chemical-distillation purification, were characterized by the low content of gas-forming impurities and the increased content of Al, Si and Cl. The glasses contained heterophase impurity inclusions mainly consisting of SiO2, and their concentration and size depended on the conditions of glass preparation. The impurity content in the purest glasses was as follows: oxygen – <0.5 ppm wt, carbon – <5 ppm wt, hydrogen – 0.1 ppm wt, Si – <1 ppm wt, transition metals – <0.25 ppm wt, heterophase impurity inclusions with sizes larger than 80 nm – <102 cm3. It was shown that heterophase impurity inclusions behaved as the centers of glass crystallization.  相似文献   

20.
Doris Ehrt 《Journal of Non》2008,354(2-9):546-552
Glasses with 55–60 mol% SnO and 40–45 mol% P2O5 have shown extremely large differences in the chemical and thermal properties depending on the temperature at which they were melted. Glasses prepared at low melting temperature, 450–550 °C, had low Tg, 150–200 °C, and low chemical stability. Glasses prepared at high melting temperature, 800–1200 °C, had much higher Tg, 250–300 °C, and much higher chemical stability. No significant differences were found by 119Sn Mössbauer and 31P Nuclear Magnetic Resonance spectroscopy. Large differences in the OH-content could be detected as the reason by infrared absorption spectroscopy, thermal analyses, and 1H Nuclear Magnetic Resonance spectroscopy. In samples with low Tg, a broad OH – vibration band around 3000 nm with an absorption intensity >20 cm?1, bands at 2140 nm with intensity ~5 cm?1, at 2038 nm with intensity ~2.7 cm?1, and at 1564 nm with intensity ~0.4 cm?1 were measured. These samples have shown a mass loss of 3–4 wt% by thermal gravimetric analyses under argon in the temperature range 400–1000 °C. No mass loss and only one broad OH-band with a maximum at 3150 nm and low absorption intensity <4 cm?1 could be detected in samples melted at high temperature, 1000–1200 °C, which have much higher Tg, ~300 °C, and much higher chemical stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号