首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-quality ZnMgO films were grown by the radio frequency (RF) magnetron sputtering technique in pure oxygen ambient. Single-crystal films were obtained, when the Mg concentration was Zn0.87Mg0.13O or lower in the case of ZnMgO/Al2O3 and when it was Zn0.65Mg0.35O or lower in the case of ZnMgO/ZnO. Polycrystalline films were obtained when the growth temperature was lower than 500 °C, regardless of the Mg concentration. Position of the photoluminescence (PL) ultraviolet (UV) peak of the ZnMgO film shifted with the addition of Mg, from 3.33 eV (ZnO) to 3.51 eV (Zn0.87Mg0.13O) and 3.70 eV (Zn0.65Mg0.35O). It was also observed that growth of the ZnMgO films at higher temperature resulted in higher band-gap energy. It was proposed that this phenomenon is because concentration of the substitutional Mg atoms occupying Zn site is increased as the growth temperature increases.  相似文献   

2.
Transparent conductive gallium‐doped zinc oxide (Ga‐doped ZnO) films were prepared on glass substrate by magnetron sputtering. The influence of substrate temperature on structural, optoelectrical and surface properties of the films were investigated by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), spectrophotometer, four‐point probe and goniometry, respectively. Experimental results show that all the films are found to be oriented along the c‐axis. The grain size and optical transmittance of the films increase with increasing substrate temperature. The average transmittance in the visible wavelength range is above 83% for all the samples. It is observed that the optoelectrical property is correlated with the film structure. The Ga‐doped ZnO film grown at the substrate temperature of 400 °C has the highest figure of merit of 1.25 × 10−2 Ω−1, the lowest resistivity of 1.56 × 10−3 Ω·cm and the highest surface energy of 32.3 mJ/m2.  相似文献   

3.
《Journal of Crystal Growth》2006,286(2):407-412
The copper nitride thin films were prepared on glass substrate by RF magnetron sputtering method. At pure nitrogen atmosphere, the nitrogen flow rate affects the copper nitride thin films’ structures. Only a little part of nitrogen atoms insert into the body center of Cu3N structure and parts of nitrogen atoms insert into Cu3N crystallites boundary at higher nitrogen flow rate. But the indirect optical energy gap, Eopg, decreases with increasing nitrogen flow rate. The typical value of Eopg is 1.57 eV. In a nitrogen and argon mixture atmosphere, when the nitrogen partial was less than 0.2 Pa at 50 sccm total flow rate, the (1 1 1) peak of copper nitride appears. Thermal decomposition temperature of Cu3N thin films deposited in pure nitrogen and 30 sccm flow rate was less than 300 °C. The surface morphology was smooth.  相似文献   

4.
Crystalline and microcrystalline Cd-Te-O samples have been obtained by RF reactive sputtering from a CdTe target using N2O as oxidant. The growth conditions were substrate temperatures of 323 K, 573 K and 773 K and cathode voltage of −400 V, corresponding to 30 W of forward power. The samples were studied by micro-Raman spectroscopy, X-ray diffraction and optical transmittance. The films are remarkably transparent in the visible range, with transmittances about 88% at 400 nm and band gap energies above the absorption edge of the glass substrates. Although only the samples prepared at 773 K present defined diffraction peaks, the analysis of the Raman spectra indicate that samples prepared at 323 K and 573 K have a defined microstructure indeed. The spectra fitting performed by comparison with pattern compounds demonstrate that Cd-Te-O films are formed of Te-O units similar to those present in metal oxide-doped tellurite glasses, such as TeO3 and TeO3 + 1 linked through Cd-O bonds. As the substrate temperature increases the microstructure evolves from a γ-TeO2 richer state to CdxTeyOz. In the crystalline sample the main phase identified was CdTeO3 even though evidence of other phases was observed.  相似文献   

5.
In this paper the results of structural analysis of the SnO2 and In2O3 films deposited by spray pyrolysis are presented. The main goals of this analysis are summarizing the results obtained in this field, highlighting a correlation between parameters of film deposition and the material structure and formulating some general regularities, typical for metal oxides. Peculiarities and mechanisms of pyrosol deposition as well as advantages and disadvantages of this technology for deposition of the films with required parameters were also discussed. It is shown that this technology has great potential for controlling structural parameters of metal oxides such as thickness, the grain size, texturing, roughness, the grain faceting and the porosity.  相似文献   

6.
High-quality ZnO thin films have been grown on a Si(1 0 0) substrate by plasma-enhanced chemical vapor deposition (PECVD) using a zinc organic source (Zn(C2H5)2) and carbon dioxide (CO2) gas mixtures at a temperature of 180°C. A strong free exciton emission with a weak defect-band emission in the visible region is observed. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption peak in the absorption spectra, are closely related to the gas flow rate ratio of Zn(C2H5)2 to CO2. Full-widths at half-maximum of the free exciton emission as narrow as 93.4 meV have been achieved. Based on the temperature dependence of the PL spectra from 83 to 383 K, the exciton binding energy and the transition energy of free excitons at 0 K were estimated to be 59.4 meV and 3.36 eV, respectively.  相似文献   

7.
8.
ABSTRACT

TiO2:SnO2 thin films were deposited on glass substrates, by using sol gel spin coating method with different ratio (3%, 5% and 7%) at 3200 rpm, to study their effect on different properties of TiO2: SnO2 thin films. The structural and optical properties of films have studied for different ratio. These deposited films have been characterized by various methods such as X-Ray Diffraction (XRD), Ultra Visible spectroscopy. The (XRD) can be used to identify crystal structure of as deposited films. The Transmission spectra have shown the transparent and opaque parts in the visible and UV wavelengths.  相似文献   

9.
10.
Fe and Fe3O4 thin films were grown by radio frequency magnetron sputtering. Fe2O3 was used as the target and hydrogen was introduced together with Argon gas to provide a certain reducing atmosphere. By varying H2/Ar flow ratio, the changes in composition and structure of the thin films from (110) Fe to (111) Fe3O4 were observed by X-ray diffraction. The valence states of Fe in the thin films were analyzed by X-ray photoelectron spectroscopy. Magnetization measurements indicate that the Fe thin films grown with low H2/Ar flow ratios possess large coercive force. It was ascribed to the increasing boundary density and the increasing amount of Fe oxides such as FeO distributed at the boundary.  相似文献   

11.
Epitaxial Ni films were deposited on (0 0 1)MgO by DC magnetron sputtering under ultra-high vacuum conditions for studies involving magnetic-multilayer applications. The deposition temperatures of the Ni films studied in this work were 100 and 400°C. Examination by transmission electron microscopy (TEM) and electron diffraction revealed that the film deposited at the lower temperature was predominately Ni[0 0 1]MgO[0 0 1] and Ni(0 1 0)MgO(0 1 0) oriented and smooth, as expected. However, the higher temperature films were predominately of the Ni MgO[0 0 1] and Ni MgO(1 0 0) orientation and facetted. The orientation has been confirmed by X-ray diffraction, where this orientation was observed to be four-fold degenerate. For each of these four orientations there also existed a twin orientation, reflected about the MgO(1 0 0) planes, giving eight possible orientations for the Ni crystallites on MgO. This epitaxial relationship was studied by dark-field TEM and electron diffraction. Because these films were polycrystalline and hence produced many diffraction spots from both the Ni and MgO with similar lattice spacings, electron diffraction patterns of the films were indexed using an electron diffraction image processing (EDIP) technique. In this technique, the polycrystalline electron diffraction pattern was converted into a graph, with the x-axis displaying lattice spacings and the y-axis, integrated intensity.  相似文献   

12.
Effects of relaxation of interfacial misfit strain and non-stoichiometry on surface morphology and surface and interfacial structures of epitaxial SrTiO3 (STO) thin films on (0 0 1) Si during initial growth by molecular beam epitaxy (MBE) were investigated. In situ reflection high-energy electron diffraction (RHEED) in combination with X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS) and transmission electron microscopy (TEM) techniques were employed. Relaxation of the interfacial misfit strain between STO and Si as measured by in situ RHEED indicates initial growth is not pseudomorphic, and the interfacial misfit strain is relaxed during and immediately after the first monolayer (ML) deposition. The interfacial strain up to 15 ML results from thermal mismatch strain rather than lattice mismatch strain. Stoichiometry of STO affects not only surface morphology but interfacial structure. We have identified a nanoscale Sr4Ti3O10 second phase at the STO/Si interface in a Sr-rich film.  相似文献   

13.
In order to contribute to the understanding of the optoelectronics properties of hydrogenated nanocrystalline silicon films, a detailed study has been conducted. Structural analysis (infrared absorption and Raman scattering spectroscopy), combined with optical measurements spectroscopy (optical transmission, photothermal deflection spectroscopy and photoconductivity) were used to characterize the films. The samples were elaborated by radio-frequency magnetron sputtering of crystalline silicon target, under a hydrogen (70%) and Argon (30%) gas mixture, at three different total pressures (2, 3 and 4 Pa) and varying substrate temperature (100, 150 and 200 °C). The results clearly indicate that the films deposited at 2 Pa are amorphous, while for 3 and 4 Pa nanocrystalline structures are observed. These results are discussed in the framework of the existing models.  相似文献   

14.
Si-rich silicon oxide (SiOx, 1<x<2) films were prepared by RF magnetron reactive sputtering or co-sputtering on the Si(1 1 1) substrates. X-ray diffraction patterns showed that the peak of silicon nanocrystals (NCs), separated from SiOx films, had (1 1 1) preferred orientation. The results of scanning electron microscopy indicated the Si NCs uniting into clusters. We demonstrated that the photoluminescence (PL) peaks at 650 nm was caused by defect center. In particular, we discussed the correlation between the PL and the structure of SiOx films. The mean size of the Si NCs was estimated to be about 3 nm by the PL peak position.  相似文献   

15.
16.
The microstructural characteristics and crystallographic evolutions of Ga-doped ZnO (GZO) films grown at high temperatures were examined by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The GZO films with various film thicknesses were grown on (0 0 0 1) Al2O3 substrates at 750 °C by RF magnetron sputtering using a 2 wt% Ga-doped ZnO single target. The (0 0 0 2) ZnO peaks in the XRD patterns shifted to a higher angle with increasing film thickness and an additional (1 0 1¯ 1) ZnO peak was observed in the final stage of film growth. HRTEM showed the epitaxial growth of GZO films in the initial growth stage and the formation of surface protrusions in the intermediate stage due to elastic relaxation. The surface protrusions consisted of {1 0 1¯ 1}, {1 0 1¯ 3}, and {0 0 0 2} planes. After the surface protrusions had formed, a GZO film with many c-axis tilted grains formed due to plastic relaxation, where the tilted grain boundaries had an angle of 62° to the substrate. The formation of the protrusions and c-axis tilted grains was closely related to the strain status of the film induced by Ga incorporation, high-temperature growth and a high film thickness.  相似文献   

17.
Pd thin films, grown on Si-rich 6H-SiC(0 0 0 1) substrates, were studied by atomic force microscopy, electron diffraction and high-resolution transmission electron microscopy. It is concluded that the growth is successful only when all the growth process takes place at room temperature. Under these conditions a very good epitaxial growth of Pd is achieved, despite the large misfit (about 8.6%) between Pd and the substrate and the existence of a semi-amorphous layer between the thin film and the substrate. A large number of twins appear in these films.  相似文献   

18.
Thin films of Ag2Cu2O3 were formed on glass substrates by RF magnetron sputtering technique under different oxygen partial pressures in the range 5 × 10‐3 – 8 × 10‐2 Pa using mosaic target of Ag70Cu30. The influence of oxygen partial pressure on the core level binding energies, crystallographic structure, and electrical and optical properties of the deposited films was studied. The atomic ratio of copper to silver in the films was 0.302. The oxygen content was in correlation with the oxygen partial pressure maintained during the growth of the films. The films formed at oxygen partial pressures < 2 × 10‐2 Pa was mixed phase of Ag2Cu2O3 and Ag. The films deposited at 2 × 10‐2 Pa were single phase of Ag2Cu2O3. The crystallite size of the films formed at 2 × 10‐2 Pa was 12 nm, while those films annealed at 473 K was 16 nm. The nanocrystalline Ag2Cu2O3 films formed at oxygen partial pressure of 2 × 10‐2 Pa showed electrical resistivity of 8.2 Ωcm and optical band gap of 1.95 eV. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We report the structural and optical properties of wurtzite-structure Zn(Mg,Cd)O ternary alloys. Wurtzite (0 0 0 1) Zn1−xCdxO and MgyZn1−yO films were grown on (11–20) sapphire substrates using remote-plasma-enhanced metalorganic chemical vapor deposition. The large bowing parameters of Zn1−xCdxO and MgyZn1−yO ternary alloys are 3.0 and 3.5, respectively, which reflects the large difference of each binary’s electronegativity. We have analyzed the broadening of photoluminescence (PL) in Zn(Mg,Cd)O alloys on alloy content by taking into account the statistical alloy fluctuation and the localization of the exciton, and have clarified that the localization of the exciton strongly affects to PL full-width at half-maximum (FWHM) in Zn(Mg,Cd)O alloys. The alloy broadenings in steady-state PL of Zn(Mg,Cd)O alloys are in good agreement with the calculated tendency by the theoretical model based on the statistical alloy fluctuation, while PL FWHM of Zn1−xCdxO is three times larger than the calculated results. Moreover, as another way to confirm alloy broadening, we also have done time-resolved PL measurements and derived the localized depth of the exciton in ZnO-based system, indicating a good agreement with the tendency of PL FWHM broadening.  相似文献   

20.
The hydride vapor phase epitaxy (HVPE) of {0 0 0 1} AlN films on {1 1 1} Si substrates covered with epitaxial {1 1 1} cubic SiC (3C-SiC intermediate layers) was carried out. 3C-SiC intermediate layers are essential to obtain high-quality AlN films on Si substrates, because specular AlN films are obtained with 3C-SiC intermediate layers, whereas rough AlN films are obtained without 3C-SiC intermediate layers. We determined the polarities of AlN films and the underlying 3C-SiC intermediate layers by convergent beam electron diffraction (CBED) using transmission electron microscopy. For the first time, the polarities of the AlN films and the 3C-SiC intermediate layers were determined as Al and Si polarities, respectively. The AlN films were hardly etched by aqueous KOH solution, thereby indicating Al polarity. This supports the results obtained by CBED. The result is also consistent with electrostatic arguments. An interfacial structure was proposed. The 3C-SiC intermediate layers are promising for the HVPE of AlN films on Si substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号