首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The values of the density were measured for binary liquid mixtures of benzene and toluene with dichloromethane over entire range of concentration using a vibrating-tube densimeter at T = (288.15, 293.15, 298.15, and 303.15) K and atmospheric pressure. The excess molar volumes, calculated from the density results, are positive for the systems of dichloromethane with benzene over the whole concentration range and present an approximate sigmoid curve for the dichloromethane with toluene. The VmE values have been fitted to the Redlich–Kister polynomial equation, and other volumetric properties such as the partial molar volumes, Vi¯, the apparent molar volume, V?i, and the partial molar excess volumes at infinite dilution, (ViE¯), were calculated over the whole composition range. The Prigogine–Flory–Patterson (PFP) theory and its applicability in predicting VmE at T = 298.15 K are tested. Good agreement was found for the mixtures dichloromethane with benzene. For the mixtures dichloromethane with toluene, which shows an approximate S-shaped VmE behaviour, the correlation fails.  相似文献   

2.
3.
4.
《Fluid Phase Equilibria》2002,202(1):13-27
Excess molar volumes, VmE, at 298.15 K and atmospheric pressure over the entire composition range for binary mixtures of 2-butanone with di-n-butyl ether and 2-pentanone and 3-pentanone with di-n-butyl ether and 2,5-dioxahexane, 2-heptanone and 4-heptanone with di-n-butyl ether, 2,5-dioxahexane and 3,6,9-trioxaundecane are reported from densities measured with a vibrating-tube densimeter. All the excess volumes present strong contractions when compared to those of n-alkanone+n-alkane systems.Molar excess enthalpies HmE and VmE of the considered mixtures vary similarly. This may be attributed to interactional effects which prevail over structural effects.Flory’s theory has been applied to the systems under study. As expected, results for HmE are better when the difference in polarity of the components of the mixture decreases. VmE is often poorly represented.  相似文献   

5.
6.
Density and viscosity of binary mixtures of (x13-amino-1-propanol + x2isobutanol) and (x13-amino-1-propanol + x22-propanol) were measured over the entire composition range and from temperatures (293.15 to 333.15) K at ambient pressure. The excess molar volumes and viscosity deviations were calculated and correlated by the Redlich–Kister (RK) equation. The thermal expansion coefficient and its excess value, isothermal coefficient of excess molar enthalpy, and excess partial molar volumes were determined by using the experimental values of density and are described as a function of composition and temperature. The excess molar volumes are negative over the entire mole fraction range for both mixtures and increase with increasing temperature. The excess molar volumes obtained were correlated by the Prigogine–Flory–Patterson (PFP) model. The viscosity deviations of the binary mixtures are negative over the entire composition range and decrease with increasing temperature.  相似文献   

7.
8.
9.
10.
The density, dynamic viscosity, and dielectric constant of propylene carbonate solutions with acetonitrile are measured over the composition of a mixed solvent at temperatures of 253.15, 273.15, 293.15, and 313.15 K. The molar volume, molar viscosity, and molar capacity of a mixture of propylene carbonate–acetonitrile and an excess amount of it are calculated. The effect the temperature and composition of the mixture have on the excess molar properties is discussed. A linear correlation is observed between the values of the molar fluidity, capacity, polarization, and molar volume of the studied system.  相似文献   

11.
《Fluid Phase Equilibria》1986,31(1):105-115
Excess molar volumes of four nonane isomers mixed with normal nonane and normal hexadecane were obtained from precise density measurements over the whole mole fraction range at 298.15 K. Good agreement was found between the experimental molar excess volume and that predicted from the Flory—Patterson theory. This work shows the importance of three contributions to VEm, heats of mixing (i.e., X12), differences in free volume and the P* effect.  相似文献   

12.
13.
14.
《Fluid Phase Equilibria》2003,204(1):75-84
New correlations have been developed to estimate saturated vapor pressures of eight HFC binary refrigerant mixtures, namely HFC125/134a, HFC125/143a, HFC134a/236fa, HFC134a/245fa, HFC143a/134a, HFC143a/152a, HFC32/125, and HFC32/134a. In this prediction method, the saturated vapor pressures of mixtures can be calculated by the thermoproperties of pure components, without any adjustable parameters determined by experimental data. The overall average absolute deviation of pressures is <1% compared with experimental data.  相似文献   

15.
In this work we used the experimental result for calculating the thermal expansion coefficients α, and their excess values α E , and isothermal coefficient of pressure excess molar enthalpy and comparison the obtain results with Flory theory of liquid mixtures for the binary mixtures {methanol, ethanol, 1-propanol and 2-butanol-chloroform} at 288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, and 323.15 K. The excess thermal expansion coefficients α E and the isothermal coefficient of pressure excess molar enthalpy ((∂H mE/∂P) T,x for binary mixtures of {methanol and ethanol + chloroform} are S-shaped and for binary mixtures of {1-propanol and 2-butanol + chloroform} are positive over the mole fraction. The isothermal coefficient of pressure excess molar enthalpy (∂H mE/∂P) T,x , are negative over the mole fraction range for binary mixture of {1-propanol and 2-butanol + chloroform}. The calculated values by using the Flory theory of liquid mixtures show a good agreement between the theory and experimental.  相似文献   

16.
Density of the water-ethylene glycol binary mixtures was measured in the entire range of compositions in the temperature range 278–333.15 K (6 values) at atmospheric pressure using a vibration densimeter. Mixtures with low concentrations of ethylene glycol were studied at 15 temperatures in the range of 274–333.15 K. Excess molar volumes V m E , the partial molar volumes of water -V 1 and ethylene glycol, -V 2, the coefficients of thermal volume expansion α of the mixture, the partial molar volume coefficients of thermal expansion of water $ \bar V_1 $ \bar V_1 and ethylene $ \bar V_2 $ \bar V_2 were calculated. Excess molar volumes were described using the Redlich-Kister equation. The density ρ of the mixture was found to increase with the increasing ethylene glycol concentration at all temperatures, but at low content of ethylene glycol the dependence ρ = f(T) of the mixture at ∼276.5 K passed through a maximum. The coefficient α increases sharply in the composition range 0 < x < 0.2, in the range 0.5 < x <1 remains almost unchanged, and at T > 277 K is positive for all compositions. The dependences $ \bar \alpha _1 $ \bar \alpha _1 = f (x) and $ \bar \alpha _2 $ \bar \alpha _2 = f (x) are complex in whole temperature range and are characterized by the presence of an extremum. V m E values are negative at all temperatures, and upon increase in the temperature the deviation from ideality decreases (x is the mole fraction of ethylene glycol).  相似文献   

17.
Phase equilibria in the DyBr3–NaBr binary system were established from differential scanning calorimetry. This system exhibits incongruently melting compound Na3DyBr6 and one eutectic located at DyBr3 molar fraction x = 0.409 (T = 711 K). Na3DyBr6 undergoes a solid–solid phase transition at 740 K and melts incongruently at 762 K. The specific conductivity of DyBr3–NaBr liquid mixtures was measured over the whole composition range. Results obtained are discussed in term of possible complex formation.  相似文献   

18.
19.
A three-step method to determine the eutectic composition of a binary or ternary mixture is introduced. The method consists in creating a temperature–composition diagram, validating the predicted eutectic composition via differential scanning calorimetry and subsequent T-History measurements. To test the three-step method, we use two novel eutectic phase change materials based on \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\mathrm O}\) and \(\mathrm{NH}_4\mathrm{NO}_3\)   respectively \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\hbox {O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) with equilibrium liquidus temperatures of 12.4 and 3.9  \(\,^{\circ }\mathrm {C}\) respectively with corresponding melting enthalpies of 135 J \(\mathrm{g}^{-1}\) (237 J \(\mathrm{cm}^{-3}\) ) respectively 133 J \(\mathrm{g}^{-1}\) (225 J \(\mathrm{cm}^{-3}\) ). We find eutectic compositions of 75/25 mass% for \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) and 73/27 mass% for \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) . Considering a temperature range of 15 K around the phase change, a maximum storage capacity of about 172 J \(\mathrm{g}^{-1}\) (302 J \(\mathrm{cm}^{-3}\) ) respectively 162 J \(\mathrm{g}^{-1}\) (274 J \(\mathrm{cm}^{-3}\) ) was determined for \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) respectively \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) .  相似文献   

20.
Experimental solubilities are reported for 3,4-dichlorobenzoic acid dissolved in methyl butyrate, and in 16 alcohol, 5 alkyl acetate, 5 alkoxyalcohol and 6 ether solvents. Solubilities were also measured in nine binary aqueous–ethanol solvent mixtures at 298.15?K. The measured solubility data were correlated with the Abraham solvation parameter model. Mathematical expressions based on the Abraham model predicted the observed molar solubilities to within 0.12 log units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号