首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ZnO–B2O3–P2O5 glasses doped with MoO3 were investigated in the series (100?x)[0.5ZnO–0.1B2O3–0.4P2O5]–xMoO3, where bulk glasses were obtained by slow cooling in air within the compositional region of 0 ? x ? 60 mol% MoO3. The incorporation of MoO3 into the parent zinc borophosphate glass results in a weakening of bond strength in the structural network, which induces a decrease in chemical durability and glass transition temperature. Raman spectra reflect the incorporation of molybdate groups into the glass network of the studied glasses by the presence of the polarized vibrational band at ≈976 cm?1 ascribed to the MOx symmetric stretching vibrations and the depolarized band at ≈878 cm?1 ascribed to the Mo–O–Mo stretching vibration. The incorporation of molybdate units into the glass network results in the depolymerization of phosphate chains and the formation of P–O–Mo bonds, as reflected in Raman and 31P NMR spectra. According to the 11B MAS NMR spectra, tetrahedral B(OP)4?x(OMo)x units are formed in the glasses, whereas only a small amount of BO4 units is converted to BO3 units in the MoO3-rich glasses.  相似文献   

2.
Glass samples from four systems: xPbO–(100?x)B2O3 (x = 30, 40, 50 and 60 mol%), 50PbO–yAl2O3–(50?y)B2O3 (y = 2, 4, 6, 8 mol%), 50PbO–ySiO2–(50?y)B2O3 (y = 5, 10, 20, 30 mol%) and 50PbO–5SiO2yAl2O3–(45?y)B2O3 (y = 2, 4, 6, 8 mol%) were prepared by a melt-quench technique. Characterization of these systems was carried out using density measurements, UV–visible spectroscopy, differential scanning calorimetry (DSC), and 11B and 27Al magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR). Our studies reveal an increase in glass density with increasing lead(II) oxide concentration in pure lead borates and also with addition of silica into 50PbO–50B2O3 glass. 11B MAS NMR measurements determine that the fraction of tetrahedral borons (N4) reaches a maximum for the glass containing 50 mol% of PbO in the PbO–B2O3 glass series and that N4 is sharply reduced upon adding small amounts of Al2O3 into lead borate and lead borosilicate systems. 27Al MAS NMR experiments performed on glasses doped with aluminum oxide show that the Al3+ are tetra-, penta- and hexa-coordinated with oxygen, even without any excess concentration of Al3+ over charge-balancing Pb2+ cations. [5]Al and [6]Al concentrations are found to have unusually high values of up to 30%. The results of UV–visible absorption spectroscopy, DSC and density measurements support the conclusions drawn from the NMR studies, providing a consistent picture of structure–property relations in these glass systems.  相似文献   

3.
Glasses in the (Er2O3)x·(B2O3)(60 ? x)·(ZnO)40 system (0  x  15 mol%) have been prepared by the melt quenching technique. X-ray diffraction, FTIR spectroscopy, UV-VIS spectroscopy and ab initio calculations studies have been employed to study the role of Er2O3 content on the structure of the investigated glass system.X-ray diffraction and infrared spectra of the glasses reveal that the B–O–B bonds may be broken with the creation of new non-bridging oxygen ions facilitating the formation of Er–O–B linkages. The excess of oxygen can be accommodated in the network by the conversion of sp2 planar [BO3] units to the more stable sp3 [BO4] tetrahedral structural units. The linkages of the [BO4] structural units can polymerize in [B3O9]? 9 cyclic trimeric ions which will produce the ErBO3 crystalline phase. An increase of the efficiency corresponding to the 4I15/2 state to 4I11/2 state (4f–4f) transitions of Er+ 3 ions was observed for the erbium oxide richest glasses.Ab initio calculations on the structure of the matrix network show the thermodynamic instability of the [BO4], [ZnO4] and [Zn4O] structural units. Formation of three-coordination oxygens was necessary to compensate shortage of oxygens from zinc ions.  相似文献   

4.
E. Mansour 《Journal of Non》2012,358(3):454-460
A series of glass of the molar formula xAl2O3-(50-x)PbO-25B2O3-25SiO2 with x:2.5–17.5 with step of 2.5 mol.% was prepared and measured for, density, molar volume and infrared absorption. A semiquantitative analysis of the IR spectra was performed. It was found that each oxide would contribute in density with a specific factor. The density factor related to PbO is markedly higher than that of the other two oxides represent the glass skeleton which means that the content of PbO is the main factor affecting the density. The depolymerization of the whole glass skeleton increases with increasing the content of Al2O3. There is a competition between the role of PbO and Al2O3 in changing the value of N4 and the crosslinking of the glass network. The silicate network tends to be distinguished from the reminder of the whole glass network with increasing alumina. The IR band located near 700 cm? 1 was suggested to be due to the vibrations of bridging oxygens between trigonal boron atoms. An essential change in the role of PbO in these glasses from glass modifier to glass former occurred around 12 mol.% Al2O3.  相似文献   

5.
A glass of composition (20 ? x)Li2O–xLiCl–65B2O3–10SiO2–5Al2O3 where 0 ? x ? 12.5 wt% is prepared using the normal melt-quenching technique. The optical constants and electrical conductivity and their correlation are investigated, furnished and discussed with the substitution of Li2O for LiCl. The mechanism of the optical absorption and the calculated Urbach energy follow the rule of phonon-assisted transitions. The ionic conduction mechanism is determined by activation energy process. Substitution up to 10 wt% LiCl provides high ionic conductivity (1.9 × 10?2 Ω?1 m?1) due to the high average electronegativity of LiCl which increases the polarizability of lithium ions. The small cation–anion distance approach confirmed the enhancement in ionic conductivity of LiCl containing glass compared to that of Li2O. Due to the large size of Cl? ions, there is an expansion of the lattice which in turn broadens the available path windows. For 12.5 wt% LiCl, anomalous density behavior is observed and a reduction in conductivity is occurred, σ = 5.4 × 10?3 Ω?1 m?1. Owing to the model of bond fluctuation, the reduction is attributed to the increase in the alkali halide concentration which creates bottlenecks that hinder the motion of Li+ ions. The ionic conductivity character is strongly supported by the behavior of the glass ionicity factor, density, molar volume, refractive index, average boron–boron separation, molar refraction, metallization criterion and non-bridging oxygen concentration of the studied glass.  相似文献   

6.
Raman spectroscopy is used here as an innovative technique to investigate sulfate content in borosilicate glasses. Using Raman spectroscopy after having heated the material, the evolution of sulfate amounts can be followed as a function of temperature, time and chemical composition of the starting matrix. The accuracy of this technique was verified using electron probe micro analysis (EPMA), on two systems of glasses (SiO2–B2O3–Na2O (SBNa) and SiO2–B2O3–BaO (SBBa)) in order to compare the effect of alkaline or alkaline-earth elements on sulfur speciation and incorporation. To quantitate sulfate content with Raman spectroscopy, the integrated intensity of the sulfate band at 990 cm?1 was scaled to the sum of the integrated bands between 850 and 1250 cm?1, bands that are assigned to Qn silica units. Calibration curves were then determined for different samples. The determination of sulfate contents with Raman spectroscopy analysis is possible with an accuracy of approximately 0.1 wt% depending on the composition of the glass. It mainly allows us to follow sulfate removal during the elaboration process and to establish kinetic curves of sulfate release as a function of the viscosity of the borosilicate glass.  相似文献   

7.
Bulk glasses of the series (1 ? x)[0.5K2O–0.1B2O3–0.4P2O5]–xNb2O5 with x = 0–45.7 mol% Nb2O5 were prepared by slow cooling in air and investigated by Raman, 31P, and 11B MAS NMR spectroscopy. The incorporation of Nb2O5 into the parent borophosphate glass results in a substantial increase in the glass transition temperature and chemical durability of glasses. Raman spectra showed that Nb atoms form distorted NbO6 octahedra, which are isolated at low Nb2O5 content, whereas at higher Nb2O5 content they form clusters. 11B NMR spectra of the glasses revealed the interaction between Nb2O5 and BO4 tetrahedral units, which results in a partial transformation of tetrahedral BO4 units to trigonal BO3 units and the formation of mixed B(OP)4?n(ONb)n units.  相似文献   

8.
Transparent glasses of composition 10BaO.20Bi2O3.(70 ? x)B2O3.xFe2O3 (wt.%) where 0  x  2.0, were characterized by XRD and SEM. Physical, spectroscopic and dielectric properties were investigated. At higher dopant of Fe2O3, EPR results revealed that, the number of Fe3+ ions participate in the resonance is decreased by forming a new signal at g  3.015 due to increase of antiferromagnetic interaction of Fe3+ ions and/or formation of low spin Fe3+ ions in the glass matrix. With initial 0.5 wt.% doping of Fe2O3, less dense glass is formed with colloids of metallic Bi0 atoms. The absorption bands at 604 and 712 nm in F5 glass are ascribed to Bi0 and Bi+ radicals respectively. No characteristic Fe3+ absorption bands (spin-forbidden) are found. Fe2+ ions are increased at higher concentration of Fe2O3. Higher concentration of Fe2O3 is favorable for BO2O?, BO3, BiO6 and FeO6 symmetry unit leads to low band gap and high Urbach energy. By doping of Fe2O3 the dielectric parameters like dielectric constant (ε′), loss (tanδ and ac electrical conductivity (σac) are found to increase.  相似文献   

9.
《Journal of Non》2005,351(49-51):3752-3759
Alkali fluoroborate glass systems containing manganese cations have been thoroughly investigated in order to obtain information about the structural role of manganese in such glass hosts. The amorphous phase of the prepared glass samples R2O–RF–B2O3:MnO (with R = Li and Na) was confirmed from their X-ray diffraction. From the infrared spectra of these glass systems it was concluded that the glass structure contains two group of bands; one due to trigonal BO3 units and the second due to the tetrahedral BO4 units. As manganese was introduced, replacing lithium or sodium, it acts as a network modifier and the intensity of the second group of bands increases at the expense of the first group of bands. The optical absorption spectra of R2O–RF–B2O3:MnO exhibited two conventional absorption bands; one due to Mn2+ ions and the other due to Mn3+ ions. The ESR spectra of these glasses showed a six-line hyper-fine structure centered at g = 2.01 (due to Mn2+ ions) and another signal at g = 4.3 (due to Mn3+ ions). The intensity of optical absorption bands and the ESR signal due to Mn2+ ions decreases with increasing MnO concentration indicating the conversion of Mn2+ ions into Mn3+ ions in the glass network. The thermoluminescence studies on these glass systems showed a quenching of TL output with increase in the concentration of MnO. All the obtained results were discussed on the basis of the glass structure and the conversion of Mn2+ into Mn3+ ions with increasing concentration of MnO in the glass systems.  相似文献   

10.
《Journal of Non》2007,353(22-23):2295-2300
(1  x)Li2O–xNa2O–Al2O3–4SiO2 glasses were studied for the progressive percentage substitution of Na2O for Li2O at the constant mole of Al2O3 and SiO2. The crystallization temperature at the exothermic peak increased from 898 to 939 °C when the Na2O content increases from 0 to 0.6 mol. The coefficient of thermal expansion and density of these as-quenched glasses increase from 6.54 × 10−6 °C−1 to 10.1 × 10−6 °C−1 and 2.378 g cm−3 to 2.533 g cm−3 when the Na2O content increases from 0 to 0.4 mol, respectively. The electrical resistivity has a maximum value at Na2O · (Li2O + Na2O)−1 = 0.4. The activation energy of crystallization decreases from 444 to 284 kJ mol−1 when the Na2O content increased from 0 to 0.4 mol. Moreover, the activation energy increases from 284 kJ mol−1 to 446 kJ mol−1 when the Na2O content increased from 0.4 to 0.6 mol. The FT-IR spectra show that the symmetric stretching mode of the SiO4 tetrahedra (1035–1054 cm−1) and AlO4 octahedra (713–763 cm−1) exhibiting that the network structure is built by SiO4 tetrahedra and AlO4.  相似文献   

11.
《Journal of Non》2007,353(18-21):1828-1833
ZnO–B2O3–P2O5 glasses formulated with Sb2O3 were investigated in the series 50ZnO–10B2O3–40P2O5 + xSb2O3 (x = 0–70 mol%). With increasing Sb2O3 content, the values of glass transition temperature decrease from 492 °C down to 394 °C. The dissolution rate of the glasses reveals a maximum for the glass with x = 15 mol% Sb2O3. Raman spectra with increasing Sb2O3 content reflect the depolymerisation of phosphate chains. Antimony at low Sb2O3 content forms individual SbO3 pyramids manifested in the Raman spectra by a broad vibrational band at ∼520–690 cm−1. In the glasses with a higher Sb2O3 content SbO3 units link into chains and clusters with Sb–O–Sb bridges manifested in the Raman spectra by a strong broad band at 380–520 cm−1. The 31P MAS NMR spectra with increasing Sb2O3 content reflect the depolymerisation of phosphate chains at low Sb2O3 content and only small changes in the PO4 coordination at a high Sb2O3 content. 11B MAS NMR spectra reveal a steady transformation of B(OP)4 units into B(OP)4−x(OSb)x units, accompanied by the transformation of BO4 into BO3 units with increasing Sb2O3 content.  相似文献   

12.
J. Ozdanova  H. Ticha  L. Tichy 《Journal of Non》2009,355(45-47):2318-2322
The glasses representing (Bi2O3)x(WO3)y(TeO2)100?x?y and (PbO)x(WO3)y(TeO2)100?x?y systems were prepared. The dilatometric glass-transition temperatures of examined glass samples were found in the region 383–434 °C, the coefficient of thermal expansion varied from 12 to 16 ppm/°C and the density ranged from 6.302 to 6.808 g/cm3. From the optical transmission measurements of thin glassy bulk samples prepared by a glass blowing, the optical gap values were found in the narrow region 3.21–3.36 eV. For the temperature interval 300–480 K, the values of the temperature coefficient of the optical band gap varied from 3.7 × 10?4 to 5.24 × 10?4 eV/K. It is suggested that Raman feature observed at around 350 cm?1 can be assigned to an overlap of Raman bands attributed to WO6 corner shared octahedra and to the following three atomic linkages: Bi–O–Te, Pb–O–Te and W–O–Te.  相似文献   

13.
《Journal of Non》2007,353(32-40):3074-3077
Time-of-Flight (TOF) neutron diffraction measurements with the 6Li/7Li isotopic substitution technique were carried out for aqueous 18 mol% lithium alaninate solutions in D2O in order to obtain structural information on the interaction between Li+ and the amino acid molecule in the concentrated aqueous solution. The first-order difference function, ΔLi(Q), was obtained from the difference between scattering cross sections observed for solutions involving dl-CH3CH(ND2)COO6Li and dl-CH3CH(ND2)COO7Li. The distribution function around Li+, GLi(r), exhibits well resolved first and second peaks that are tentatively attributable to the nearest neighbor Li+  O and Li+  D interactions. However, the coordination number, nLiD, estimated from the area under the second peak is found to be much larger than the value, 2nLiO, evaluated from the first peak of the present GLi(r). This implies that the nearest neighbor Li+  alaninate ion interaction may contribute to the second peak. Structural parameters concerning the first coordination shell of the Li+ has been determined through the least squares fitting analysis of the observed ΔLi(Q). It has been revealed that the Li+ is surrounded by 2.4(1) D2O molecules and 2.3(2) alaninate ions with interatomic distances of r(Li+  OD2O) = 1.97(1) Å, r(Li+  DD2O) = 2.62(1) Å and r(Li+  Oalaninate) = 2.38(1) Å, respectively.  相似文献   

14.
Higher refractive index and higher Abbe value were obtained simultaneously at B2O3/Al2O3 = 1 in the system of 65P2O5xAl2O3–(20 ? x)B2O3–10CaO–5Li2O, although the refractive index generally shows a positive correlation with the dispersion. We investigated the molar volume and the molar refraction by Lorentz–Lorenz’s formula and also studied the coordination number of 11B and 27Al by MAS NMR. By the replacement of Al2O3 with B2O3, the molar refraction constantly decreased, but the molar volume was minimized at B2O3/Al2O3 = 1. The refractive index behavior of the glasses was mainly determined by the molar volume in the system. The coordination number of B3+ was only IV and it did not change if the composition was changed. On the other hand the coordinations IV, V and VI were observed for Al3+. The ratio of Al3+(VI) was maximized at B2O3/Al2O3 = 1. It is considered that the higher coordination of Al3+ brings the improvement of the packing and it leads to high refractive index.  相似文献   

15.
《Journal of Non》2006,352(6-7):709-713
Variations in glass transition temperature, onset of crystallization, thermal expansion coefficient, density and molar volume with B2O3 concentration were studied in a series of xB2O3–(100  x)Ba(PO3)2 glasses with 0–10 mol% B2O3. DTA analysis and isothermal treatments for powdered glass samples reveal that ⩾7.5 mol% B2O3 addition suppresses surface crystallization during softening process. Raman spectroscopy suggests that the properties are related to the glass structure consisting of PO4 Q2 units with diborate and PO4–BO4 groups.  相似文献   

16.
《Journal of Non》2006,352(23-25):2657-2661
Germanate glasses were prepared by the melt-quenching method using an assembled hot-thermocoupler equipped in a sample chamber of a fluorescence spectrometer, and subsequently their luminescence and excitation spectra were measured. In the GeO2 glass, luminescence bands due to the Ge2+ center appeared at the central wavelengths of 300 and 395 nm, their excitation bands being at 250 and 330 nm, respectively. In the (100  x)GeO2  xMmOn glasses, for MmOn = B2O3 (x  50), SiO2 (x  40), and Al2O3 (x  2), the luminescence intensity and therefore the amount of the Ge2+ center increased with increasing the content of MmOn, where M(2n/m)+ ions (B3+, Si4+, and Al3+) have lower basicities than a Ge4+ ion. Contrarily, for MmOn = Li2O (x  30), Na2O (x  20), K2O (x  20), CaO (x  20), SrO (x  3), BaO (x  15), ZnO (x  20), Ga2O3 (x  10), Sb2O3 (x  20), Bi2O3 (15  x  25), TiO2 (x  3), and Nb2O5 (x  10), the luminescence intensity and the amount of the Ge2+ center rapidly decreased with increasing the amount of additives and disappeared, where M(2n/m)+ ions (Li+, Na+, K+, Ca2+, Sr2+, Ba2+, Zn2+, Ga3+, Sb3+, Bi3+, Ti4+, and Nb5+) have higher basicities than a Ge4+ ion.  相似文献   

17.
Amorphous anhydrous silica SiO2 (mw) (99.99%) is successfully synthesized through microwave irradiation technique and time of reaction is reduced up to 1 h. The dehydration phase study of Si–water, Si–OH, Si–O–Si networking, elemental analysis and surface morphology was carried out by FTIR, FTNIR, SEM and EDAX spectroscopic techniques. The broad absorption stretching and bending of Si–OH and H2O at 3695.38–2832.96 cm? 1, 1638 cm? 1 and 1191.20–1017.14 cm? 1 completely disappeared and appearance of new bands at 946.93 and 797.63 cm? 1 confirmed the amorphous anhydrous silica with Si–O–Si networking. The SEM images of SiO2 (mwc) described the smooth and fine particle texture and confirmed 99.99% Si–O–Si networking of anhydrous silica. The 99.99% purity was verified by EDAX spectra which exhibited sharp signals only for oxygen and silicon. Toxicity against Monomorium minimum and Tribolium castaneum with 100% mortality and LT50 91 min and 7.5 h respectively is being reported. It can be used for long storage of grains in the future.  相似文献   

18.
Two series of boroaluminosilicate glasses having varying mole ratios of B2O3/Na2O (series 1) and B2O3/SiO2 (series II) were prepared by conventional melt-quench method. Based on 29Si and 11B MAS NMR studies, it has been established that for series I glasses up to 15 mol% B2O3 content, Na2O preferentially interacts with B2O3 structural units resulting in the conversion of BO3 to BO4 structural units. Above 15 mol% B2O3 for series I glasses and for all the investigated compositions of the series II glasses, silicon structural units are unaffected whereas boron exist in both trigonal and tetrahedral configurations. Variation of microhardness values of these glasses as a function of composition has been explained based on the change in the relative concentration of BO4 and BO3 structural units. These glasses in the powder form can act as efficient room temperature ion exchangers for metal ions like Cu2+. It is seen that the ion exchange does not affect the boron and silicon structural units as revealed by IR studies.  相似文献   

19.
The europium (Eu2 +) and dysprosium (Dy3 +) codoped melilite (Sr2MgSi2O7) long afterglow phosphors are synthesized with H3BO3 and Li2CO3 fluxes, respectively. The XRD analysis demonstrates similar crystal structure and crystal size of the samples. The SEM presents a better crystallization of samples with flux, other than the one without flux. The excitation and emission spectra of the samples are similar but the decay processes of the afterglow are different. The afterglow properties are enhanced by H3BO3 while they are suppressed by Li2CO3, due to the different concentrations and depths of traps. The sample without flux has a low trap concentration because of the greater surface. Li+ ions reduce the concentration of Sr2 + vacancies and then the trap depth becomes smaller. B3 + ions break the potential balance in oxygen vacancies then the attraction to trapped electron is enhanced.  相似文献   

20.
The 70Li2S · (30 ? x)P2S5 · xP2O5 (mol%) oxysulfide glasses were prepared by the melt quenching method. The glasses were prepared in the composition range 0  x 10. The glass–ceramics were prepared by heating the glasses over crystallization temperatures. The POnS3?n (n = 1–3) oxysulfide units were produced in the glasses and glass–ceramics by partial substituting P2O5 for P2S5. In particular, the P2OS64? unit would be produced by substituting a small amount of P2O5 for P2S5. The oxygen atoms were incorporated into the Li7P3S11 crystal structure because the diffraction peaks of the oxysulfide glass–ceramic shifted to the higher angle side. The glass–ceramic with 3 mol% of P2O5 exhibited the highest conductivity of 3.0 × 10?3 S cm?1 and the lowest activation energy for conduction of 16 kJ mol?1. The P2OS64? dimer units in the oxygen-incorporated Li7P3S11 crystal would improve conductive behavior of the Li2S–P2S5 glass–ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号