首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Material and electronic properties of Ni–Nb–Zr–H glassy alloys were investigated as a function of the rotating wheel speed in the amorphous ribbon-preparation method. Increase in density and amorphous colony size indicates that the degree of amorphousness increases with increase in the rotating speed. Supercooling, which reached by rotating wheel speed of 10,000 rpm (104.7-m/s), of the molten alloy produces a ballistic conductor with electrical conductivity of about 0.1  cm (× 10? 9 Ω cm, 0.01% of silver (1.62 μΩ cm)) for (Ni0.36Nb0.24Zr0.40)94.6 H5.4 glassy alloy and a room-temperature discrete Coulomb oscillation for (Ni0.36Nb0.24Zr0.40)91.6H8.4 glassy alloy. The increase in degree of amorphousness by supercooling induces uniformity of cluster morphology.  相似文献   

2.
Decolorization property of Fe–Mo–Si–B ribbons with different structures was investigated, and kinetic analyses elucidated that the decolorization process could be described by a pseudo-first-order kinetic model. Amorphous ribbons were proved to decolorize Acid Orange II solutions much more rapidly than amorphous/nanocrystalline ribbons at the same temperatures. Activation energies of the decolorization process by amorphous ribbons and amorphous/nanocrystalline ribbons were obtained according to Arrhenius equation, and they were proved more or less the same because of the existence of amorphous phase in both ribbons, while the different reactive site amount was considered to lead to the different decolorization rates for the two ribbons with different structures.  相似文献   

3.
The alloy compositions have been optimized by modifying the B and Si contents in (Fe0.474Co0.474Nb0.052)100 ? x(B0.8Si0.2)x alloy system with commercial materials. The thermal stability of the supercooled liquid improves with the increased B and Si contents from x = 22 to 28. The composition of the alloy with x = 26 is close to a eutectic point. By copper mold casting, (Fe0.474Co0.474Nb0.052)100 ? x(B0.8Si0.2)x bulk glassy alloys with diameters up to 5 mm were synthesized for the composition range of x from 22 to 28. In addition to high glass-forming ability (GFA), the (Fe0.474Co0.474Nb0.052)100 ? x(B0.8Si0.2)x glassy alloys exhibit good soft magnetic properties as well, i.e., rather high saturation magnetization of 0.84–1.07 T, low coercive field of 1.8–3.2 A/m, high initial permeability of 10100–24100 at 1 kHz under a field of 1 A/m and Curie temperature of 620–730 K.  相似文献   

4.
In this work, we present a systematic study on the crystallization kinetics and the magnetic properties of melt-spun Fe80B10Si10 ? xGex (x = 0.0 ? 10.0) amorphous alloys. The activation energy for crystallization, determined by differential scanning calorimetry, displayed a strong dependence on the Ge content, reflecting a deleterious effect on the alloys' thermal stability and their glass forming ability with increasing Ge concentration. On the other hand, the alloys exhibited excellent soft magnetic properties, i.e., high saturation magnetization values (around 1.60 T), alongside Curie temperatures of up to 600 K. Complementary, for increasing Ge substitution, the ferromagnetic resonance spectra showed a microstructural evolution comprising at least two different magnetic phases corresponding to a majority amorphous matrix and to Fe(Si, Ge) nanocrystallites for x  7.5.  相似文献   

5.
Amorphous Fe67?xC10B9Mo7+xCr4W3 (x = 1–7 at.%) plates with 0.64 mm thickness were prepared by copper mold casting. The thermal properties and microstructural development during heat treatments were investigated by a combination of differential scanning calorimetry, differential thermal analysis, and X-ray diffraction. The glass forming ability (GFA) and activation energy for crystallization have a distinct dependence on Mo content. Fe62C10B9Mo12Cr4W3 was the best glass former in this study, demonstrating a supercooled liquid region, ΔTx = 51 K, and an activation energy for crystallization, Q = 453 kJ/mol. The GFA of alloys in this system was governed by elastic strain optimization resulting directly from the variation in Mo content. Heat treatments were performed to demonstrate resistance to crystallization under typical processing conditions. Alloys in this system exhibited a three phased evolution during crystallization. A second set of heat treatments was performed to identify each phase. An analysis of phase evolution revealed a distinct dependence of phase evolution with stepwise substitution of Mo for Fe in this system.  相似文献   

6.
Ni- and Cu–free Zr–Al–Co–Ag bulk metallic glasses (BMGs) were synthesized by copper mold casting. The effects of Ag addition for partially replacing Co of Zr53Al16Co31 BMG on the corrosion behavior, surface chemistry and in vitro biocompatibility of BMGs were investigated. The Zr–Al–Co–Ag BMGs are spontaneously passivated with low passive current densities in phosphate buffered saline (PBS) solution. Partial substitution of Co by Ag is effective in improving the corrosion resistance of the Zr–Al–Co BMG. X-ray photoelectron spectroscopy (XPS) measurements reveal that the Ag addition increases the concentration of Zr and decreases the concentration of Al in the surface passive film of BMGs, which is responsible for the enhanced corrosion resistance of Zr–Al–Co–Ag BMGs. Mouse MC3T3-E1 pre-osteoblast cell proliferation results and morphology observations show that the Zr–Al–Co–Ag BMGs exhibit comparable cell viability and proliferation activity with those of Ti–6Al–4V alloy, demonstrating their good biocompatibility. The high corrosion resistance in PBS and low in vitro cytotoxicity of Zr–Al–Co–Ag BMGs suggest an initial biocompatibility for biomedical applications.  相似文献   

7.
Z.Q. He  X.L. Wang  Z.Y. Zhao  B.Y. Quan 《Journal of Non》2008,354(15-16):1683-1689
Glass forming ability, thermal stability and mechanical behavior of (Fe0.5Ni0.5)80?xMoxB20 (x = 0, 2, 4, 6, 8) amorphous alloys were studied by XRD, TEM, SEM, DSC, tensile test, microhardness test and tearing test. The effects of Mo addition on glass formation, strength and ductility of (Fe0.5Ni0.5)80?xMoxB20 amorphous alloys were discussed. The substitution of Mo for Fe and Ni simultaneously causes improvement in glass forming ability and thermal stability, and changes the crystallization process. The tensile fracture strength of amorphous alloy depends on both hardness and ductility; the alloy with high hardness and good ductility simultaneously also has a high tensile fracture strength. The (Fe0.5Ni0.5)78Mo2B20 amorphous alloy exhibits good glass forming ability and the highest tensile fracture strength among (Fe0.5Ni0.5)80?xMoxB20 alloys. Micro-plastic deformation occurred in ductile and brittle amorphous alloys that both show viscous flow characteristics. The mechanical behavior of (Fe0.5Ni0.5)80?xMoxB20 amorphous alloys is related to the average outer shell electron concentration of metal atoms.  相似文献   

8.
9.
I. Betancourt  S. Baez 《Journal of Non》2009,355(22-23):1202-1205
In the present research work, thermal stability, magnetic properties and microhardness of Fe72B19.2Si4.8M4 (M = Ta or Y) amorphous ribbons obtained by chill block melt-spinning technique are reported. The crystallization temperatures resulted as high as 1129 K (for M = Ta) and of 1167 K (for M = Y), which indicate a considerable thermal stability for both alloys. On the other hand, the saturation polarization (μ0Ms) together with the Curie temperature (Tc) also showed excellent combination of values, with 0.95 ± 0.12 T and 586 ± 8 K, respectively (for the Ta-containing alloy) and of 1.55 ± 0.18 T and 698 ± 6 K, respectively (for the Y-containing alloy). Additionally, the Vickers microhardness exhibited values over 1100 kg/mm2 for both alloys.  相似文献   

10.
Prediction of bulk metallic glass (BMG) forming compositions has always been a challenge due to thermodynamic and kinetic constraints. In the present investigation, a parameter based on the enthalpy of chemical mixing (?Hchem) and the mismatch entropy (?Sσ/kB) has been used to correlate with glass forming ability in some Zr based BMGs. The new thermodynamic parameter, PHS = ?Hchem × ?Sσ/kB, is found to have strong correlation with glass forming ability in the configurational entropy (?Sconfig/R) range of 0.9–1.0. PHS has been calculated for compositions in Zr–Cu–Ag, Zr–Cu–Al, Zr–Cu–Ti and Zr–Cu–Ga ternary systems. It is observed that in all the systems studied, the best BMG composition (highest critical diameter (Zc) of glass formation) is the one that corresponds to the highest negative PHS value. Present approach using PHS could be road map to design new BMG forming compositions.  相似文献   

11.
O.E. Awe  O. Olawole 《Journal of Non》2012,358(12-13):1491-1496
A theoretical investigation of the energetics and its effect on the alloying behaviour of Cd–Hg and Cd–Mg liquid alloys have been carried out with the aim of correlating their bulk and surface phenomena. Using the Quasi-chemical approximation for regular solution model, our results indicate that Cd–Hg and Cd–Mg are weakly heterocoordinated both in the bulk and on the surface. We observed that the degree of chemical order in Cd–Mg liquid alloy is more than that of Cd–Hg liquid alloy.  相似文献   

12.
Crystal structure of tisinalite from the Lovozero alkaline massif (the Kola Peninsula) was established by single-crystal X-ray diffraction analysis (SYNTEX $\bar P1$ diffractometer, λMoKα radiation, 2θ/θ scanning mode). The structure solution (SHELX97 program package, R hkl = 0.0565, 951 independent reflections, anisotropic refinement of thermal atomic displacements) confirmed that tisinalite belongs to the lovozerite structure type (sp. gr., $\bar P1$ , a = 10.036(5) Å, c = 12.876(9) Å, Z = 3). The difference between the structure of tisinalite and the structures of the minerals of the lovozerite group established earlier consists in the nature of the occupancy of both cation and anion positions.  相似文献   

13.
《Journal of Non》1986,83(3):297-316
The anneal-induced relaxation behavior for (FeM)83P17 (M  Cr, Mo, Mn, Co or Ni) amorphous alloys was examined calorimetrically with the aim to clarify the effect of M substitution on the two-stage relaxation previously found by the present authors. Upon heating the sample annealed at temperatures below Tg, a reversible endothermic reaction (enthalpy relaxation) occurs above Ta. The changes in ΔCp,endo and with Ta show two distinguishable stages only for The FeMoP alloy which exhibits glass transition; a low-temperature peak at a temperature that is lower by about 180 K than Tg and a high-temperature one just below Tg. However, any indication of the high-temperature peak is not detected for the other alloys which crystallize before Tg. From the data of ΔCp,endo, ΔHσ,endo and activation energy for the low-temperature peak which has been thought to generate by relaxation of metal atoms, the first-stage relaxation was concluded to become difficult in the order of Ni < Co < Mn < Cr < V < Mo, i.e., with the decrease in the group number of the periodic table. The change in the first-stage enthalpy relaxation behavior with the substitution of Fe by M is interpreted to originate from the change in the mobility (i.e., relaxation time) of metal atoms through the change in the bonding force among the constituent elements.  相似文献   

14.
Effective internal shear stress σi induced by torsional deformation of Zr46(Cu4/5Ag1/5)46Al8 and Zr46Cu46Al8 bulk metallic glasses different by the glass-forming ability of the maternal melts has been determined by measurements of stress relaxation upon stepwise unloading. It has been found that the ratio σi/σ0 (σ0 is the initially applied shear stress) decreases upon increasing the temperature from ≈ 0.8 at T = 450K (T  0.64 × Tg) to ≈ 0.08 at T = 638K (T  0.91 × Tg) independently of σ0 and glass composition. The obtained result is in good agreement with earlier data obtained on ribbon metallic glasses. The origin of deformation-induced internal stresses and their connection with deformation mechanisms of metallic glasses has been briefly discussed.  相似文献   

15.
The magnetic and lattice properties of a sample of La(Fe0.86Si0.14)13 ferromagnet have been measured. The influence that neutron irradiation has on the physical properties of this ferromagnet is studied. It is shown that the irradiation of this sample by a fluence of 3 × 1019 n/cm2 increases the lattice constant a and the Curie temperature (T C ) as the volume magnetostriction decreases. A model of ferromagnet is proposed which satisfactorily describes the dependence a(T) of the initial and irradiated samples and their magnetic properties. The temperature dependence of the change in entropy when switching the magnetic field on and off is calculated. It is established that the change in both the magnetic and lattice parts of the total entropy at the magnetic phase transition must be taken into account for La(Fe x Si1 ? x )13 compounds.  相似文献   

16.
介绍了一类性能优异、结构有序的新型材料--A3BGa3Si2O14(A=Ca,Sr;B=Nb,Ta)单晶,总结了其研究进展,并对该类晶体的生长、结构、热学、光学和压电性能进行了描述.  相似文献   

17.
The reaction between the dianion [Fe2(CO)6(2-S)2]2– and NiCl2(dppf) occurs readily at room temperature to give the mixed-metal cluster Fe2(CO)6(3-S)2Ni(dppf) in moderate yield. Fe2(CO)6(3-S)2Ni(dppf) was isolated by preparative chromatography and its solid-state structure established by X-ray diffraction analysis. Fe2(CO)6(3-S)2Ni(dppf) crystallizes in the monoclinic space group C2/c, a = 20.320(6), b = 13.114(2), c = 15.622(2) Å, = 110.25(2)°, V = 3905.4(11) Å3, Z = 4, and d calc = 1.630 g/cm.3 The X-ray structure of Fe2(CO)6(3-S)2Ni(dppf) exhibits an Fe2S2Ni arachno polyhedral core, with the pendant dppf ligand attached to an essentially square planar Ni center. The redox chemistry of Fe2(CO)6(3-S)2Ni(dppf) was investigated by cyclic voltammetry which showed a reversible, one-electron oxidation localized on the Fe2S2 core along with an irreversible, one-electron reduction that is antibonding with respect to the Fe—Fe and Fe—S bonds. The electrochemical assignments were confirmed by carrying out extended Hückel MO calculations on the model cluster Fe2(CO)6(3-S)2Ni(H4-dppf).  相似文献   

18.
The effect of Co addition (substituting for Ce) on crystallization behavior of Ce70Al10Cu20 amorphous alloys has been investigated using X-ray diffraction (XRD), differential thermal analysis (DTA) and transmission electron microscopy (TEM). The Co addition has an obvious effect on topological short-range ordering of Ce–Al–Cu–(Co) amorphous alloys. Moreover, the Co addition can slightly improve the thermal stability of Ce–Al–Cu based amorphous alloys. The 1 and 3 at.% Co additions do not obviously change the crystallization behavior of the Ce–Al–Cu–(Co) amorphous alloys, and the final crystallization products are FCC–CeAlCu(Co)O. However, the 5 at.% Co addition can alter the crystallization behavior of the Ce70Al10Cu20 amorphous alloys. Proper content of Co can effectively suppress the formation of oxide phases during annealing of the Ce–Al–Cu–(Co) amorphous alloys.  相似文献   

19.
M. Shapaan 《Journal of Non》2009,355(16-17):926-931
This paper presents the results of kinematical studies of glass transition and crystallization in the unconventional glassy system (60?x)V2O5xAs2O3–20Fe2O3–10CaO–10Li2O (x = 0, 10, 20, 30, 40 mol%) using differential scanning calorimetry (DSC). The glass transition temperatures (Tg), the onset crystallization temperatures (Tc), and the peak temperatures of crystallization (Tp) were found to be dependent on the compositions and the heating rates. From the dependence on heating rates of (Tg) and (Tp) the activation energy for glass transition (Eg) and the activation energy for crystallization (Ec) are calculated. The thermal stability of (60?x)V2O5xAs2O3–20Fe2O3–10CaO–10Li2O was evaluated in term of, criteria ΔT = Tc ? Tg. All the results confirm that the thermal stability increase with increasing As2O3 contents. From the electric–dielectric measurements it was found that, σdc, σac(ω) and θD/2 decrease with increasing As2O3 contents. It is also observed that the dielectric constant (ε1(ω)) and the loss factor (tan δ) decrease with increasing As2O3 contents in this glass system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号