共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nanocrystalline 1%, 2% and 4% Cobalt-doped TiO2 were prepared by sol–gel technique, followed by freeze-drying treatment at ?30 °C temperature for 12 h. The obtained gels were thermally treated at 200, 400, 600 and 800 °C. X-ray Powder Diffraction (XRD), Scanning Electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDAX) were used to study its structural properties. The XRD pattern shows the coexistence of anatase phase and minor brookite phase. UV–vis Spectroscopy and Photoluminescence (PL) were used to study its optical properties. Optical band gap was calculated with the incorporation of different concentrations of cobalt. UV–visible spectroscopy shows variation in band gap for the sample treated at different temperatures for same concentration. All Cobalt doped TiO2 nanostructures show an appearance of Red shift relative to the bulk TiO2. The determination of magnetic properties was also carried out by Gouy balance method. 相似文献
3.
Porous phosphate-based glass ceramics prepared by the sol–gel method were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential thermal analysis (DSC). The 48CaO–45P2O5–2ZnO–5Na2O glassy system can remain fully amorphous up to 550 °C. After heat treated at 650 °C, the obtained porous bodies consisted of dense struts and macropores where β-Ca2P2O7 and Na2CaP2O7 phases crystallized from the glass matrix. When treated at 750 °C, Ca4P6O19 and NaZn(PO3)3 precipitated homogeneously as new phases among the residual glass matrix. The material was assessed by soaking samples in phosphate-based buffer solution (PBS) solution to determine the solubility and observe apatite formation. 相似文献
4.
Al2O3–ZrO2 (Y2O3) nanopowders containing 5, 10 and 15 wt% ZrO2 were synthesized by aqueous sol–gel method using aluminum sec-butoxide and zirconium butoxide as precursors. BET analysis shows that, increasing the zirconia content results in a decrease in surface area, 152, 125 and 121 m2/g, and an increase in pore size, 5.63, 9.79 and 11.05 nm for 5, 10 and 15 wt% ZrO2, respectively. Furthermore, a shift toward higher temperatures is observed for transition of transitional aluminas to stable α-alumina phase through increasing the zirconia content. SEM micrograph of calcined nanopowders revealed nanosize spherical particles in the range of 15–75 nm. 相似文献
5.
Lilian R. Avila Evelisy C. de O. Nassor Paula F.S. Pereira Alexandre Cestari Katia J. Ciuffi Paulo S. Calefi Eduardo J. Nassar 《Journal of Non》2008,354(42-44):4806-4810
In this work, we report the synthesis of europium-doped phosphosilicate glasses from tetraethylorthosilicate (TEOS), phenyltrietoxysilane (PTES) and ammonium phosphate (NH4H2PO4) prepared by the sol–gel process. The matrix was synthesized by modified Stöber methodology. The alkoxide precursors PTES and TEOS were mixed with NH4H2PO4, in the presence of europium III chloride, using ethanol as solvent in basic catalysis. These materials were studied by photoluminescence spectroscopy (PL), thermal analysis (TGA/DTA), transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). The results obtained for the materials show the formation of conchoidal-fractures, which are characteristics of glass materials. The thermal analysis showed the thermal stability of materials up to 300 °C. Eu III has been used as structural probe due to its photophysical properties. The PL spectra displays the lines characteristics of the Eu (III) ion 5D0 → 7FJ (J = 0, 1, 2, 3 and 4). Wide bands were observed, indicating non-homogeneous sites that are characteristic of amorphous systems. 相似文献
6.
M.C. Kao H.Z. Chen S.L. Young B.N. Chuang W.W. Jiang J.S. Song S.S. Jhan J.L. Chiang L.T. Wu 《Journal of Crystal Growth》2012,338(1):139-142
Tantalum-substituted Bi4Ti3O12 (Bi4Ti3-x/5Tax/5O12, BTTO) thin films were fabricated on Pt(111)/Ti/SiO2/Si(100) substrates by sol–gel technology. The effects of various processing parameters, including Ta content (x=0~0.08) and annealing temperature (500~800 °C), on the growth and properties of thin films were investigated. X-ray diffraction analysis shows that the BTTO thin films have a bismuth-layered perovskite structure with preferred (117) orientation. With the increase of Ta content, the grain size of film decreased slightly, and highly (117)-oriented BTTO films were obtained in the composition of x=0.06. Ta doping on the B-site of Bi4Ti3O12 could induce the distortion of oxygen octahedral and decrease the oxygen vacancy concentration by a compensating effect. The highly (117)-oriented BTTO thin films with x=0.06 exhibits the maximum remanent polarization (2Pr) of 50 μC/cm2 and a low coercive field (2Ec) of 104 kV/cm, fatigue free characteristics up to ≧ 108 switching cycles. 相似文献
7.
Sol–gel derived xNb2O5–(100 ? x)SiO2 films (where x = 100, 80, 60, 50, 40, 20, 0 mol%) were nitrided at various temperatures (800 °C, 900 °C, 1000 °C, 1100 °C and 1200 °C). The structural transformations occurring in the films as a result of ammonolysis were studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The XRD results have shown that the temperatures below 1100 °C were too low to obtain a pure NbN phase in the samples. The AFM observations indicate that the formation of the NbN phase and the size of NbN grains are related to the silica content in the layer. NbN grains become more regular and larger as the niobium content increases. The maximum grain size of about 100 nm was observed for x = 100. Preparation of the Nb2O5–SiO2 sol–gel derived layers and the subsequent nitridation is a promising method of inducing crystalline NbN in amorphous matrices. It follows from the XPS results that a small amount of Nb2O5 remains in the films after nitridation at 1200 °C and that nitrogen reacted not only with Nb2O5 but also with SiO2. 相似文献
8.
9.
A series of sol–gel based photopolymerizable silica glass for holographic storage has been synthesized via a facile chemical design in an effort to overcome the cracking problem incurred during the irradiation stage. The holographic composite material includes a low molecular weight polydimethylsiloxane (PDMS) with end-capped hydroxyl groups, an epoxide-containing coupling agent, a photopolymerizable acrylate monomer, and the sol–gel-derived silica matrix. Inclusion of PDMS provides improved compression stress and strain and toughness over the original unmodified samples, without deterioration on the diffraction efficiency (η). A plateau value of η ~ 40% can be found under a beam power of 5.02 mW. Correlation between the molecular weight of acrylate polymer and η of the holographic composite material is described and the discrepancies are analyzed. The premature saturation of polymerization in the holographic system is attributed to the retarded free radical polymerization within the silica matrix. Minor variation of η with photoinitiator concentration is observed, indicating that only moderate molecular weight is required for a reasonably high η. Based on the chemical and physical interactions within the material system, a crack-free mechanism is elucidated. Finally, the adverse effect of the residual photoinitiator on the holographic media is addressed. 相似文献
10.
Leda M. Saragiotto Colpini Giane G. Lenzi Creusa M. Macedo Costa 《Journal of Non》2008,354(42-44):4816-4822
The presence of Lewis and Brønsted acid sites in calcined mixed oxides 10% V2O5/SiO2, 10% V2O5/TiO2, and 10% V2O5/Al2O3 obtained by sol–gel method was determined through infrared spectroscopy using pyridine as a molecular probe. Texturally, they are formed by mesopores and present high specific surface area and controlled porosity. Scanning electron microscopy revealed that vanadium is homogeneously distributed in the materials. The infrared spectra of samples submitted to different temperatures after the absorbance of pyridine were obtained. The existence of active metal ions on the surface of the materials was evidenced by the presence of Lewis and Brønsted acid sites, which confers them potential catalytic properties. 相似文献
11.
M. Zaharescu V.S. Teodorescu M. Gartner M.G. Blanchin A. Barau M. Anastasescu 《Journal of Non》2008,354(2-9):409-415
This work describes the preparation of HfO2 thin films by the sol–gel method, starting with different precursors such as hafnium ethoxide, hafnium 2,4-pentadionate and hafnium chloride. From the solution prepared as mentioned above, thin films on silicon wafer substrates have been realized by ‘dip-coating’ with a pulling out speed of 5 cm min?1. The films densification was achieved by thermal treatment for 10 min at 100 °C and 30 min at 450 °C or 600 °C, with a heating rate of 1 °C min?1. The structural and optical properties of the films are determined employing spectroellipsometric (SE) measurements in the visible range (0.4–0.7 μm), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The main objective of this paper was to establish a correlation between the method of preparation (precursor, annealing temperature) and the properties of the obtained films. The samples prepared from pentadionate and ethoxide precursors are homogenous and uniform in thickness. The samples prepared starting from chloride precursor are thicker and proved to be less uniform in thickness. Higher non-uniformity develops in multi-deposition films or in crystallized films. A nano-porosity is present in the quasi-amorphous films as well in the crystallized one. For the samples deposited on silicon wafer, the thermal treatment induced the formation of a SiO2 layer at the coating–substrate interface. 相似文献
12.
The purpose of the study is to investigate the influence of the precursors, pH of the solution and temperature on the gelation and structure evolution of the samples from the SiO2-P2O5 system. Tetraethoxysilane (TEOS) was used as precursor for SiO2 and triethylphosphate (TEP) or phosphoric acid for P2O5, together with water as reagent for hydrolysis reaction and ethylic alcohol as solvent. The pH of the sols was modified by adding hydrochloric acid, in the case of TEP and by adding ammonia, in the case of H3PO4. The samples have been prepared starting from P2O5/SiO2 = 1/10 and 1/5 molar ratio, H2O/TEOS = 1; 2; 3 mass ratios and C2H5OH/TEOS = 1 mass ratio. We prepared silico-phosphate samples in the 1.5–5 pH domain and we observed that in all the cases, the lowest gelation time was found in the 3.5–4.5 pH range. We found that for the same pH value samples prepared with H3PO4 had a lower gelation time (few days) by comparison with the samples prepared with TEP (weeks), explainable by the low rate of the hydrolysis and condensation reactions of TEP. When the amount of water was increased, the gelation time increased in the case of samples prepared with H3PO4 and it was not significantly changed in the case of the samples prepared with TEP. The increasing of the solution temperature up to 40–41 °C yielded a decreasing of the gelation time (hours), especially for the samples prepared with H3PO4 by comparison with those prepared using TEP. In all the cases, the increased amount of water resulted in an increasing of the gelation time, even the temperature was raised. FTIR and Raman spectroscopy characterization aimed at getting information about the structural changes in the case of the samples dried in air and also for those heated at 100 °C, 300 °C, 600 °C and 900 °C. Vibration modes specific for SiOEt, SiOH, hydrogen bonds, H2O and combined vibrations have been observed, which are in agreement with those revealed in literature data. 31P and 29Si MAS NMR spectra gave interesting information about first surrounding of P and Si ions meaning the type and proportion of Q species and their evolution starting from the room temperature up to 900 °C. 相似文献
13.
A. Chiappini C. Armellini A. Chiasera M. Ferrari R. Guider Y. Jestin L. Minati E. Moser G. Nunzi Conti S. Pelli R. Retoux G.C. Righini G. Speranza 《Journal of Non》2009,355(18-21):1132-1135
Hybrid organic–inorganic waveguides based on ZnO-(3-glycidoxypropil)trimethoxisilane (GPTS) have been fabricated by sol–gel route. A transparent sol of ZnO was added to the GPTS host and the resulting sol was deposited on silica substrates by spin coating technique. Waveguides with different molar composition (100?x)GPTS?xZnO (x = 10, 20, 30) were investigated by different diagnostic techniques. Morphological measurements were carried out by means of an AFM apparatus, and a roughness of few nanometers was estimated for all the waveguides. Optical properties such as refractive index, thickness, number of propagating modes and attenuation coefficient were measured at 632.8, 543.5, 1319 and 1542 nm by the prism coupling technique as a function of the ZnO content. Photoluminescence measurements, upon excitation at 325 nm, showed a large luminescence band in the region between 350 and 600 nm with a main peak centered at about 380 nm, due to the presence of ZnO nanoparticles. 相似文献
14.
Studies in superconducting properties of NbN–SiO2 films are reported. The films were obtained through nitridation of sol–gel derived Nb2O5–SiO2 coatings at 1200 °C, a process leading to the formation of disordered structures with NbN metallic grains dispersed in the insulating SiO2 matrix. Electrical resistivity was measured with the conventional four-terminal method in the temperature range from 5 to 280 K. The samples’ superconducting properties, examined with magnetically modulated microwave absorption (MMMA), depend on the NbN/SiO2 molar ratio and the film’s thickness. 相似文献
15.
This work presents the results of the structural analysis of xNbN–(100-x)SiO2 (x = 100, 80, 60 mol%) thin films by X-ray absorption spectroscopy (XAS). To prepare the films, thermal nitridation of sol–gel derived coatings have been performed. The resulting films have a granular structure with NbN grains distributed in the SiO2 matrix. The size of the grains depends on the NbN/SiO2 molar ratio. A detailed X-ray absorption fine structure (XAFS) data analysis shows that in all the samples both nitrogen and oxygen atoms are present as nearest neighbours of Nb. The intra-granular phase is an ordered NbN phase, whereas the shells around the grains are formed mainly by an oxide phase and, possibly, by other niobium nitride phases (probably with low nitrogen content). Two possible origins of the inter-granular oxide phase were considered: incomplete nitridation of Nb2O5 and addition of SiO2. Both of them are connected with the sample preparation method. The obtained XAS results allowed us to correlate the thickness and stoichiometry of the films under study with the electronic structure of the Nb ions and with the local geometric structure in their environment. 相似文献
16.
In this work nanocrystalline BaFe12O19 thin films have been prepared on the Si (1 1 0) substrates by a sol–gel method using the aqueous solution of metal nitrates. The efforts have been done to decrease the calcination temperature and to reduce the crystallite size of the single-phase barium ferrite thin films. The precursor solutions were primed with the various Fe/Ba ratios and two kinds of the basic agents, and the coated films were heat treated at the different temperatures. The thin films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The effects of calcination temperature, molar ratio of Fe/Ba and basic agent on composition, crystallites size and morphology were also investigated. 相似文献
17.
Francesco d’Acapito Ana C. Marques Luís F. Santos Rui M. Almeida 《Journal of Non》2008,354(45-46):4940-4943
The local order around ion-implanted Er3+ ions in SiO2–TiO2–HfO2 thin films prepared by sol–gel, was studied by extended X-ray absorption fine structure at the Er-LIII edge. Both the first and second coordination shells of Er3+ were analyzed for different heat-treatments. While the first coordination shell always consisted of ~6–7 oxygen atoms at distances varying between 2.23 and 2.27 Å, the structure of the second shell was found to vary with the film composition and heat-treatment. Namely, whereas Si was found to be the only second neighbor of erbium in binary SiO2–TiO2 films, the addition of HfO2 caused a preferential replacement of Si by Hf. The post-implantation thermal treatments also played a fundamental role in determining the final environment of the erbium ions. 相似文献
18.
Komornikov V. A. Timakov I. S. Zajnullin O. B. Grebenev V. V. Makarova I. P. Selezneva E. V. 《Crystallography Reports》2018,63(6):1009-1014
Crystallography Reports - The phase equilibria in the quaternary water–salt system Cs2SO4–Rb2SO4–H2SO4–H2O have been studied. The crystallization ranges are determined, and... 相似文献
19.
Ultrafine iron zircon particles were prepared by a sol–gel route using propylene oxide as a gelation agent. The unique chemistry of this method produces highly homogeneous gel intermediate, resulting in the substantial lowering of heat treatment temperature to 1000 °C without using of mineralizer. This calcination temperature is lower than that in solid-state chemistry and other sol–gel routes, leading to the minimizing of the particles aggregation and growth. The non-mineralizer synthesis process guarantees the preparation of pure phase and high quality iron zircon with ultrafine particle size. This epoxide assisted sol–gel route shows great potential as a general procedure for the large scale production of ultrafine particles of zircon based pigments. 相似文献
20.
Evandro A. de Morais Luis V.A. Scalvi Alberto A. Cavalheiro Américo Tabata José Brás B. Oliveira 《Journal of Non》2008,354(42-44):4840-4845
Some very relevant optical, electrical, and structural properties of SnO2 doped with rare-earth ions Er3+ and Eu3+ are presented. Films are produced by the sol–gel-dip coating process, and may be described as a combination of nanoscopic dimension crystallites (about 3–10 nm) with their respective intergrain potential barriers. The Er3+ and Eu3+ ions are expected to act as acceptors in SnO2, which is a natural n-type conductor, inducing a high degree of charge compensation. Electron trapping and emission spectra data are presented and are rather distinct, depending on the location of the rare-earth impurity. This behavior allows the identification of two distinct centers: located either in the SnO2 lattice or segregated at the particles surface. Based on a model for thermally activated cross-section defects, the difference between the capture energy of the photo-excited electron and the intergrain potential barrier is evaluated, leading to distinct values for high and low symmetry sites. A higher distortion in the lattice of undoped SnO2 and SnO2:Eu (1 at.%) was evaluated from Rietveld refinements of X-ray diffraction data. This was confirmed by Raman spectra, which are associated with the particles size and disorder. By comparing the samples with the same doping concentration, it was found that this disorder is higher in Eu-doped SnO2 than in Er-doped SnO2, which is in agreement with a higher energy for the lattice relaxation in the trapping process by Eu3+ centers. 相似文献