首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman spectra and electrooptical Kerr coefficients of glasses belonging to one lithium–niobate–silicate glass-forming system xNb2O5 · (66 ? x)SiO2 · 19Li2O · 11K2O · 2B2O3 · 2CdO are studied. It has been found that these glasses demonstrate a record value of electrooptical Kerr coefficient; the glass with x = 35 showed electrooptical Kerr coefficient equal to 266 × 10?16 m/V2. Using Raman spectroscopy combined with the concept of Constant Stoichiometric Groupings, a correlation of electrooptical Kerr coefficients of these glasses with the content of Li2O · Nb2O5 (or 2LiNbO3) groupings has been demonstrated. The hypothesis that electrooptical Kerr sensitivity of glasses is related to the ordered regions with composition and symmetry corresponding to some of known electrooptical crystals has been verified. These regions, which the authors called ‘Crystal Motifs’, are identified with the groupings found in studying Raman spectra of the glasses.  相似文献   

2.
Potassium lithium niobate (KLN) is a nonlinear optical material with a high nonlinearity. It has the potential to improve the performance and reduce the cost of blue and UV lasers. KLN crystals are not commercially viable because growth by traditional techniques is not possible. In an effort to develop commercially viable KLN, single crystals of the material were grown by the laser heated pedestal growth method (LHPG) with compositions of x=0.02, 0.06 and 0.2 following K3Li2?xNb5+xO15+2x. Noncritical phase matching at 20 °C for previously unreported compositions of x=0.02 and 0.06 was measured at 795 nm and 805 nm, respectively. Overall, the results suggest that single crystal KLN can be used for SHG into the UV region of the spectrum and can be developed into a commercially viable nonlinear optical material.  相似文献   

3.
《Journal of Non》2005,351(46-48):3610-3618
The structure of potassium niobium silicate glasses in a wide compositional range has been studied by means of Raman and FTIR spectroscopy. The glasses spectra were compared to those of the KNbSi2O7 and K3Nb3O6Si2O7 polycrystalline samples, obtained by crystallization of glasses of the same composition. It was found that the structure of such glasses is formed by SiO4 tetrahedra and distorted NbO6 octahedra. The amount of highly distorted (edge-sharing, non-bridging oxygens) octahedra results essentially unchanged from the glass composition. By contrast, the fraction of octahedra with a lower distortion degree (corner-sharing, bridging oxygens) increases with the Nb2O5 content. Raman and FTIR investigations indicate that during long heat treatments at temperatures near Tg, in the 23K2O · 27Nb2O5 · 50SiO2 glass, a structural change occurs regarding the amorphous matrix with a decrease of the niobium octahedra distortion. This can be related to a segregation process producing niobium rich regions nanometric in size. In the first heat treatment (2 h) the glass remains amorphous while for more prolonged heat treatments, nanocrystals of an unidentified phase are formed. In the same time the changes of the amorphous matrix hinder further crystallization.  相似文献   

4.
《Journal of Non》2006,352(32-35):3739-3743
Niobium phosphate glasses with composition 33P2O5 · 27K2O · 40Nb2O5 are usually very stable with regard to crystallization resistance, with a relatively high glass transition temperature (Tg  750 °C), and are potentially suitable for nuclear waste immobilization. Porous niobium phosphate glasses were prepared by the replication method. The porous glasses were produced via the dip-coating of an aqueous slurry containing 20 wt% powdered glass into commercial polyurethane foams. The infiltrated foams were oxidized at 600 °C for 30 min to decompose the polymeric chains and to burn out the carbon, leading to a fragile glass skeleton. Subsequent heating above the glass transition temperature in the range of 780–790 °C for 1 h, finally resulted in mechanically stable glass foams, which maintained the original interconnected pore structure of the polyurethane foam. The struts showed the neck formation between particles, evidencing the initial stage of sintering. The open and interconnected porosity of the glassy foams lies in the range of 85–90 vol.%. It was concluded that porous niobium phosphate glasses are potential candidates for immobilizing liquid nuclear waste.  相似文献   

5.
Thermal conductivity of glass is one of the fundamental properties of it. However, that has not been studied enough. That of only less than 20 compositions has been measured below the room temperature. In this study, we measured the thermal conductivity of xNa2O · (100 ? x)SiO2 and (33 ? y)Na2O · yCs2O · 67SiO2 glasses by a transient heating method in the temperature range from about 150 K to room temperature. The conductivity of xNa2O · (100 ? x)SiO2 is found to decrease with the increase in alkali content. The dominant factor of this behavior is the decrease in phonon mean free path, which is due to the increase of non-bridge oxygen. Thermal conductivity of (33 ? y)Cs2O · yNa2O · 67SiO2 is decreased with the increase in Cs2O/(Na2O + Cs2O) ratio. The dominant factor of this behavior is the decrease of sound velocity. However, composition dependence of the phonon mean free path also affects the thermal conductivity. Phonon mean free path of 33Cs2O · 67SiO2 glass is longer than that of 33Na2O · 67SiO2 glass, and should be related to the change in distribution of structural unit in glass. In addition, phonon mean free path of mixed alkali glasses are shorter than that of single alkali glasses.  相似文献   

6.
The structures of the full series of alkali borate glasses (M2O)x(B2O3)1?x (M = Li, Na, K, Rb and Cs) at two different concentrations, x = 0.14 and x = 0.30, have been investigated by means of molecular dynamics simulations. Additional compositions have also been investigated for the lithium and caesium borate glasses (x = 0.10, 0.20, 0.25, and 0.40). The main experimental trends are well reproduced by the simulations, even if the agreement is not quantitative. Our results indicate that lithium atoms can enter into the matrix of pure vitreous B2O3 without inducing large modifications in the B–O network, even at large concentrations. However when the other alkali ions are added to the initial structure, the network opens to accommodate the larger size of the cation. These modifications induce the appearance of a low-Q shoulder or pre-peak, whose intensity increases with increasing alkali concentration as well as with increasing alkali size.  相似文献   

7.
《Journal of Non》2006,352(38-39):4082-4087
Liquids with the base compositions (16  x/2)Na2O · xNaF · 10CaO · 74SiO2 (x = 0, 1, 3, and 4) and (10  x/2) · Na2O · xNaF · 10CaO · yAl2O3 · (80  y)SiO2 (x = 0, 1, 3, 5 and y = 5 and 15) doped with 0.25 mol% Fe2O3 were studied by means of square-wave voltammetry in the temperature range from 1000 to 1500 °C. With increasing temperature, the redox equilibria were shifted to the reduced state. Also while increasing the alumina concentration, the Fe2+/Fe3+-redox equilibrium is shifted to the reduced state. In the soda-lime–silica melt the addition of fluoride shifts the equilibrium to the oxidized state, while in the aluminosilicate melts with 15 mol% Al2O3, the equilibrium is shifted to the reduced state. In the aluminosilicate melts with 5 mol% Al2O3, the equilibrium was not affected by the fluoride concentration. This is explained by the structure of the respective glass compositions.  相似文献   

8.
The scope of this work is to determine the crystalline phases of devitrified barium magnesium phosphate glasses and the glass composition which presents the best resistance to crystallization. Barium magnesium phosphate glasses with composition xMgO · (1 ? x)(60P2O5 · 40BaO) mol% (x = 0, 0.15, 0.3, 0.4, 0.5, and 0.6) were analyzed by differential thermal analysis (DTA) to evaluate the thermal stability against crystallization, and X-ray diffraction (XRD) to identify the crystalline phases formed after devitrification. The glass transition temperature (Tg) increases as the MgO content increases. The maximum temperature attributed to the crystallization peak in the DTA curve (Tc) increases when x increases in the range 0 ? x ? 0.3, and it decreases for x > 0.3. The most thermally stable glass composition against crystallization is for x = 0.3. After the devitrification, the number of coexisting crystalline phases increases as the MgO content increases. For x = 0.3 there is the coexistence of γBa(PO3)2 and Ba2MgP4O13 phases for devitrified glasses. The trend of the Tc is explained based on the assumptions of changes in the Mg2+ coordination number and the amphoterical features of MgO.  相似文献   

9.
《Journal of Non》2007,353(18-21):1941-1945
The effect of uranium oxide on the structure of sodium borosilicate host glasses has been studied by neutron diffraction. The samples were prepared by quenching the melted mixtures of composition 70 wt% [(65  x)SiO2 · xB2O3 · 25Na2O · 5BaO · 5ZrO2] + 30 wt% UO3 with x = 5, 10 and 15 mol%. It was found, that the U-loaded glasses posses good glass and hydrolytic stability. An enhanced probability for inter-mediate atomic correlations at around 4.8 Å has been established. The RMC simulation of the neutron diffraction data is consistent with a model where the uranium ions are incorporated into interstitial voids in the essentially unmodified network structure of the starting host glass. The U–O atomic pair correlation functions show a sharp peak at around 1.7 Å, and several farther distinct peaks are at 2.8, 3.6 and 4.1 Å. The uranium ions are coordinated by six oxygen atoms in the 1.6–3.4 Å interval.  相似文献   

10.
The medium-range order of phospho-silicate bioactive glasses (with compositions (2 ? p)SiO2 · 1Na2O · 1.1CaO · pP2O5, in which p = 0.10, 0.20, 0.26) has been studied by means of a combined-experimental (MAS-NMR, chemical durability measurements) and computational (classical molecular dynamics (MD)) approach. The structural model obtained by MD is showed to be helpful in the interpretation of the NMR spectra. A small amount of Si–O–P link units has been detected in glasses with low P2O5-content, but at high P2O5 concentration the percentage of Si–O–P bridges becomes important. However, Qn distributions show that the HP5 (p = 0.20) glass structure is less polymerized with respect to the H (p = 0.10) and HP6.5 (p = 0.26) glasses. These results provide useful explanation of the behavior of these glasses in water and highlight the influence of the medium-range order on a very important property of potential bioactive glasses such as the chemical durability.  相似文献   

11.
Glasses of the xEu2O3 · (100?x)[2Bi2O3 · B2O3] system with 0 ? x ? 25 mol% have been characterized by X-ray diffraction and FTIR spectroscopy measurements. Melting at 1100 °C and the rapid cooling at room temperature permitted us to obtain glass samples. In order to improve the local order and to develop crystalline phases, the glass samples were kept at 625 °C for 24 h. After heat treatment two crystalline phases were put into evidence. One of the crystalline phases was observed for the host glass matrix, the x = 0 mol% sample, and belongs to the cubic system. The second one was observed for the x = 25 mol% sample and was find to be orthorhombic with two unit cell parameters very close to each other. For the samples with 0 < x < 25 mol% there is a mixture of the two mentioned phases. FTIR spectroscopy data suggest that both Bi2O3 and B2O3 play the glass network former role while the europium ions play the network modifier role in the studied glasses.  相似文献   

12.
《Journal of Non》2006,352(28-29):3121-3125
The structure of xWO3 · (100  x)[2P2O5 · PbO] glass system with 0  x  50 mol% was investigated by Raman spectroscopy. The characteristic bands of these glasses due to the stretching and bending vibrations were identified and analyzed by the increasing of WO3 content. This fact allowed us to identify the specific structural units which appear in these glasses and thus to point out the network modifier role of tungsten oxide for low concentrations and its former role at high concentrations.  相似文献   

13.
This work presents a study on the structure, microstructure and properties of 50Li2xB2O3·(50 ? x)P2O5 glasses. The structure has been studied through NMR spectroscopy and the microstructure by TEM. The properties of the glasses are discussed according to their structure and microstructural features. The introduction of boron produces new linkages between phosphate chains through P–O–B bonds, whose amount increases with boron incorporation; at the same time, a depolymerisation of the phosphate chains into Q1-type phosphate units takes place. The introduction of boron produces an increase in Tg together with a decrease in the molar volume. The room temperature electrical conductivity increases with boron content as well. However, B2O3 contents higher than 20 mol% lead to crystallisation of lithium orthophosphate which contributed to hinder ionic conduction of the glasses.  相似文献   

14.
In order to crystallize a large quantity of the lithium?mica in glass?ceramics, 5.1 mass% MgF2 was added to the starting materials of the parent glasses having chemical compositions of Li(1+x)Mg3AlSi3(1+x)O10+6.5xF2 (x = 0.5 and 1.0). Transparent glass?ceramics, in which a large quantity of lithium?mica with particle size of <50 nm was separated, could be prepared from the MgF2-added parent glass with x = 0.5. While the parent glass, which had a binodal phase separation structure, did not exhibit electrical conductivity, the transparent glass–ceramic was given conductivity by the formation of an interlocking structure of mica. As the separated mica formed a tighter interlocking structure, the conductivity increased and reached a value of 2.0 × 10?3 S/cm at 600 °C. The MgF2-added parent glass with x = 1.0 was not transparent because of coarse spinodal phase separation. The conductivity was 4.3 × 10?4 S/cm at 600 °C but was significantly decreased by the separation of mica.  相似文献   

15.
The crystallization behavior of 30Na2O–25Nb2O5–(45 ? x) SiO2–xAlO1.5 (x = 0, 2.5, and 5) (mol%) glasses was examined and the effect of Al2O3 addition on the formation of perovskite-type NaNbO3 crystals was clarified. It is found from X-ray diffraction analyses and transmission electron microscope observations that NaNbO3 nanocrystals are formed in all glasses and the size of NaNbO3 crystals decreases with the substitution of Al2O3 for SiO2. A crystallized (heat-treated at 684 °C for 5 h) glass with x = 5, which contains NaNbO3 nanocrystals with an average size of 50 nm, shows good optical transparency in the wavelength region of 500–2000 nm and a small hysteresis loop in the polarization–electric field curve. The lines containing NaNbO3 crystals were patterned on the surface of NiO-doped glass with x = 5 by irradiations (power: 1.3–1.4 W, scanning speed: 10 μm/s) of Yb:YVO4 fiber laser (wavelength: 1080 nm). The formation mechanism of NaNbO3 nanocrystals in aluminosilicate glasses was also discussed.  相似文献   

16.
《Journal of Non》2007,353(30-31):2919-2925
The aim of the present paper is to give structural information in order to set a correlation between the electrical conductivity behavior and structures of lithium and silver vanadium–tellurite based glasses. We report our structural studies and compare the effect of the nature of the metallic cation on glasses of the form XM2O · (1  X)V2O5 · 2TeO2 (where 0  X < 1 and M = Li or Ag). Fourier transform infra-red (FTIR) spectra were recorded for all compositions and complementary differential scanning calorimetry (DSC) measurements and X-ray diffraction (XRD) measurements were also carried out. This paper should be considered as complementary to a previous article reporting the conductive behavior of theses glasses. In the latter we reported the obtained results on electrical conductivity studies. The results confirm the existence of a transition from a typically electronic (polaronic) conductive regimen when the molar fraction (X) of M2O is equal to 0, to an ionic conductive regimen when X tends to 1. The evidence for the independent migration path for both electrons and ions was put into evidence by studying the electrical conductivity behavior in a complementary system of the form X M2O · (1  X)[0.5V2O5–0.5MoO3] · 2TeO2. In this system vanadium was partially replaced by molybdenum which acts as a ‘diluting’ agent of the active centers involved in the electronic transport.  相似文献   

17.
《Journal of Non》2007,353(18-21):2020-2024
Glasses from the xMnO · (100−x)[3B2O3 · 0.9PbO · 0.1Ag2O] system with 0  x  20 mol% have been prepared and studied by means of FT-IR absorption and Raman scattering. We interpreted the spectroscopic data in conjunction with the structural information obtained by X-ray diffraction and scanning electron microscopy (SEM). The X-ray patterns have showed homogenous glasses over the entire compositional range while the SEM pictures have detected metallic silver or Ag2O clusters dispersed in the glass network. Acting as complementary spectroscopic techniques, both types of measurements, FT-IR and Raman, revealed that the network structure of the studied glasses is mainly based on BO3 and BO4 units placed in different structural groups, the BO3 units being dominant. The influence of manganese-ion content (x), on the NBO4/NBO3 ratio evolution was investigated.  相似文献   

18.
Glasses in the ternary system xCuO?(100 ? x)[55B2O3·45ZnO] (0  x  20 mol%) have been prepared by melting at 1200 °C and rapidly cooling at room temperature. The effect of copper ions addition in 55B2O3·45ZnO glass matrix together with the matrix effect on paramagentic behavior has been investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, differential thermal analysis (DTA), electron paramagnetic resonance (EPR), ultraviolet–visible (UV–VIS) spectroscopy and density measurements. The increase of the number of non-bridging oxygen (NBO) atoms as a function of CuO content in these glasses leads to the decrease of glass polymerization which reduces the stability of the glasses and favors the association of copper ions in clusters. This leads to the major changes of structural and optical properties of the studied glasses as can be seen from the data obtained by FTIR and EPR spectroscopies.  相似文献   

19.
《Journal of Non》2006,352(36-37):3914-3922
The effect of host glass composition on the optical absorption and fluorescence spectra of Sm3+ and Dy3+ has been studied in mixed alkali borate glasses of the type 67B2O3 · xLi2O · (32  x)Cs2O (x = 8, 12, 16, 20 and 24). The Judd–Ofelt intensity parameters (Ω2, Ω4 and Ω6) are calculated. The radiative transition probabilities (A), radiative lifetimes (τR), branching ratios (β) and integrated absorption cross-sections (Σ) are computed for certain excited states of Sm3+ and Dy3+ ions for different x values in the glass matrix. Stimulated emission cross-sections (σp) are obtained for certain emission transitions of two ions in these mixed alkali borate glasses. These parameters are compared for different x values in the glass matrix. Variation of these parameters with x in the glass matrix has been studied.  相似文献   

20.
《Journal of Non》2007,353(24-25):2363-2366
Glasses of the xGd2O3 · (100  x)[B2O3 · Bi2O3] system with 0.5  x  10 mol% were studied by electron paramagnetic resonance (EPR) and magnetic susceptibility measurements. Data obtained show that for low gadolinium oxide contents of the samples (x  3 mol%) the Gd3+ ions are randomly distributed in the host glass matrix and are present as isolated and dipole–dipole coupled species. For higher gadolinium oxide contents of the samples (x > 3 mol%) the Gd3+ ions appear as both isolated and antiferromagnetically coupled species. The EPR spectra of the glasses reveal resonance sites with an unexpected high crystalline field in addition to the ‘U’ spectrum, typical for Gd3+ ions in disordered systems. This absorption line is due to Gd3+ ions that replace Bi3+ ions from the host glass matrix and could play the network unconventional former role in the studied glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号