首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
O. Cozar  D.A. Magdas  I. Ardelean 《Journal of Non》2008,354(10-11):1032-1035
The local symmetry and interaction between paramagnetic ions in xMoO3(1 ? x)[2 P2O5PbO] glasses with 0.5 ? x ? 50 mol% are investigated by EPR spectroscopy. For x ? 10 mol% the isolated Mo5+ ions surrounded by five oxygen ligands in a square-pyramidal form (C4v symmetry) prevail. The short range disorder in the environment of Mo5+ ions is not significantly (ΔR/R  2%). At high molybdenum content (x > 20 mol%) the dipole–dipole and superexchange coupled Mo5+ ions appear and their number increases with the MoO3 content. These two aspects are also correlated with the network modifier and former role of molybdenum oxide in function of its concentration. Thus a strong depolymerization of the phosphate structure and the formation of P–O–Mo or Mo–O–Mo bonds in studied glasses appear.  相似文献   

2.
ZnO–B2O3–P2O5 glasses doped with MoO3 were investigated in the series (100?x)[0.5ZnO–0.1B2O3–0.4P2O5]–xMoO3, where bulk glasses were obtained by slow cooling in air within the compositional region of 0 ? x ? 60 mol% MoO3. The incorporation of MoO3 into the parent zinc borophosphate glass results in a weakening of bond strength in the structural network, which induces a decrease in chemical durability and glass transition temperature. Raman spectra reflect the incorporation of molybdate groups into the glass network of the studied glasses by the presence of the polarized vibrational band at ≈976 cm?1 ascribed to the MOx symmetric stretching vibrations and the depolarized band at ≈878 cm?1 ascribed to the Mo–O–Mo stretching vibration. The incorporation of molybdate units into the glass network results in the depolymerization of phosphate chains and the formation of P–O–Mo bonds, as reflected in Raman and 31P NMR spectra. According to the 11B MAS NMR spectra, tetrahedral B(OP)4?x(OMo)x units are formed in the glasses, whereas only a small amount of BO4 units is converted to BO3 units in the MoO3-rich glasses.  相似文献   

3.
A series of borophosphate glasses in the composition (B2O3)0.10–(P2O5)0.40–(CuO)0.50?x–(MoO3)x; 0.05 ? x ? 0.50 have been investigated for room temperature density and dc conductivity over the temperature range from 350 to 650 K. The density decreased with increase in MoO3 over the composition range studied except a slight increase around 0.35 mole fraction. The observed initial decrease in conductivity with the addition of MoO3 has been attributed to the hindrance offered by the Mo+ ions to the electronic motions. The observed peak-like behavior in conductivity in the composition range 0.20 – 0.50 mol% of MoO3 is ascribed to the mixed transition metal ion effect (MTE). Mott’s small polaron hopping model has been used to analyze the high temperature conductivity data and the activation energy for conduction has been determined. The low temperature conductivity has been analyzed in view of Mott’s and Greaves variable range hopping models. It is for the first time that conduction mechanisms have been explored and MTE detected in mixed transition metal ions doped borophosphate glasses.  相似文献   

4.
Vitreous samples (1-x) AgPO3x MoO3 (0  x  0.5) were prepared by conventional melt-quenching and characterized by Differential Scanning Calorimetry (DSC). The structural evolution of the vitreous network was monitored by 31P solid state nuclear magnetic resonance and Raman scattering, and assignments were aided by corresponding studies on the model compound AgMoO2PO4. The 31P MAS-NMR data differentiate between species having two, one, and zero P―O―P linkages (Q(2) Q(1), and Q(0) species), respectively. Interatomic connectivities involving these units are revealed by two-dimensional INADEQUATE data, utilizing the formation of double quantum coherences mediated by indirect 31P–31P spin–spin interactions via P―O―P linkages. As this method discriminates against isolated P atoms, it also serves as an important spectral editing tool for constraining lineshape fits. 95Mo NMR data and Raman spectra suggest that the Mo species are most likely six-coordinate, forming four P―O―Mo linkages and are otherwise invariant with composition, except at MoO3 contents  40 mole %, where some Mo―O―Mo bonding and/or clustering is observed.  相似文献   

5.
In the present report, ionic transport properties and microstructural investigations of superionic materials in a cost-effective glassy system xCuI–(100 ? x)[2Ag2O–0.7V2O5–0.3B2O3], where x = 30, 40, 45, 50 and 60, have been described. The temperature dependent electrical conductivity studies were carried out by ac impedance analysis. The microstructure of the materials studied by SEM indicated the presence of dispersed CuO and AgI micro-crystals in the silver oxysalt glass matrix. High room temperature electrical conductivity of 3.58 × 10?3 S cm?1 and low activation energy of 0.24 eV were obtained for the best conducting composition. The ac impedance data were analyzed using impedance and modulus formalisms. These materials show extremely high ti value of 0.999 and the ionic conductivity is apparently due to Ag+ ions only. The use of two glass formers helped to form materials with higher Tg, higher thermal stability and better ionic transport properties.  相似文献   

6.
《Journal of Non》2007,353(11-12):1120-1125
We present a study of the electrical properties of silver chalcogenide glasses ‘40AgI’–30Ag2S–30GeS2, 45AgI–27.5Ag2S–27.5GeS2 and 50AgI–25Ag2S–25GeS2 in the 77–400 K temperature and the 20 Hz to 1 MHz frequency ranges. In our temperature range, a large variation of the real permittivity is observed, in relation with an electrodes polarization effect. As the amount of silver iodide increases in the Ag2S–GeS2 matrix, the glass transition temperature and the activation energies decrease, the electrical conductivity increases and reaches 4 Ω−1 m−1 at room temperature for the glass with 50% AgI. The study of the conductivity shows a behavior due to a high ionic conductivity, thermally activated with Edc = 0.21 eV, E1 = 0.075 eV (40AgI–30Ag2S–30GeS2, 45AgI–27.5Ag2S–27.5GeS2), Edc = 0.17 eV, E1 = 0.055 eV for 50AgI–25Ag2S–25GeS2. For these glasses, we have seen three conductivity regimes. The first two terms are thermally activated. The third term cannot be actually clearly identified because either it is thermally activated with a very low activation energy and frequency dependent, or it is almost non-thermally activated and frequency dependent.  相似文献   

7.
D. Singh  S. Kumar  R. Thangaraj 《Journal of Non》2012,358(20):2826-2834
Optical and electrical properties of the (Se80Te20)100 ? xAgx (0  x  4) ultra-thin films have been studied. The ultra-thin films were prepared by thermal evaporation of the bulk samples. Thin films were annealed below glass transition temperature (328 K) and in between glass transition temperature and crystallization temperature (343 K). Thin films annealed at 343 K showed crystallization peaks for Se–Te–Ag phases in the XRD spectra. The transmission and reflection of as-prepared and annealed ultra-thin films were obtained in the 300–1100 nm spectral region. The optical band gap has been calculated from the transmission and reflection data. The refractive index has been calculated by the measured reflection data. It has been found that the optical band gap increases, but the refractive index, extinction coefficient, real and imaginary dielectric constant decrease with increase in Ag content. The optical band gap and refractive index show the variation in their values with increase in the annealing temperature. The extinction coefficient increases with increasing annealing temperature. The surface morphology of ultra-thin films has been determined using a scanning electron microscope (SEM). The measured dc conductivity, under a vacuum of 10? 5 mbar, showed thermally activated conduction with single activation energy in the measured temperature range (288–358 K) and it followed Meyer–Neldel rule. The dc activation energy decreases with increase in Ag content in pristine and annealed films. The results have been analyzed on the bases of thermal annealing effects in the chalcogenide thin films.  相似文献   

8.
M.R. Sahar  K. Sulhadi  M.S. Rohani 《Journal of Non》2008,354(12-13):1179-1181
Er3+-doped tellurite glasses of the (80 ? x)TeO2–20ZnO–(x)Er2O3 system (0.5 mol% ? x ? 2.5 mol%) have successfully been made by melt-quenching technique and their structure has been investigated by means of DTA and Raman spectroscopy. The DTA results show the thermal parameters; such as the glass transition temperature (Tg) and crystallization temperature (Tc) were determined. It is found that this system provides a stable and wide glass formation range in which the glass stability around 99–140 °C may be obtained. The Raman spectroscopy used the structural studies in the glass system. Two Raman shift peaks were observed around 640–670 cm?1 and 720–740 cm?1, which correspond to the stretching vibration mode of TeO4 tbp and TeO3 tp, respectively. It is found that the spectral shift in Raman spectra is depending on the Er2O3 content. This evolution is an indication of the changes in the basic unit of the glass structure.  相似文献   

9.
《Journal of Non》2006,352(52-54):5487-5491
The glass-forming ability and thermal stability of bulk glassy Pd79Cu6Si10P5 alloy were studied by substitution of Cu with Ag and with Au + Ag from 0 to 6 at.%. The results indicated that the small addition of Ag strongly affects the thermal stability and glass-forming ability of the Pd79Cu6Si10P5 alloy. The alloy doped with 4 at.% Ag (Pd79Cu2Ag4Si10P5) exhibits the largest glass-forming ability among the Pd79Cu6−xAgxSi10P5 (x = 0–6 at.%) alloys. The critical diameter for glass formation of this alloy reaches as large as 7 mm by copper mold casting. On the other hand, the multi-addition of Au + Ag does not increase the glass forming ability though the Ag and Au are similar in atomic size. The largest glass forming ability is obtained at 1 at.% Au + 2 at.% Ag among the Pd79Cu6−xyAuxAgySi10P5 (x = 1–4 at.%, y = 1–3 at.%) alloys. The critical diameter of this alloy is 5 mm by copper mold casting.  相似文献   

10.
《Journal of Non》2007,353(8-10):729-732
The purpose of this work is to study the change in the structure of the Ge–Se network upon doping with Ag. We report here a neutron diffraction study on two glasses of the system Agx(Ge0.25Se0.75)100−x with different silver contents (x = 15 and 25 at.%) and for two different temperatures (10 and 300 K). The total structure factor S(Q) for the two samples has been measured by neutron diffraction using the two-axis diffractometer dedicated to structural studies of amorphous materials, D4, at the Institut Laue Langevin. We have derived the corresponding radial distribution functions for each sample and each temperature, which gives us an insight about the composition and temperature dependence of the correlation distances and coordination numbers in the short-range. Our results are compatible with the presence of both GeSe4/2 tetrahedra and Se–Se bonds. The Ag atoms are linked to Se in a triangular environment. Numerical simulations allowing the identification of the main peaks in the total pair correlation functions have complemented the neutron diffraction measurements.  相似文献   

11.
《Journal of Non》2007,353(18-21):2020-2024
Glasses from the xMnO · (100−x)[3B2O3 · 0.9PbO · 0.1Ag2O] system with 0  x  20 mol% have been prepared and studied by means of FT-IR absorption and Raman scattering. We interpreted the spectroscopic data in conjunction with the structural information obtained by X-ray diffraction and scanning electron microscopy (SEM). The X-ray patterns have showed homogenous glasses over the entire compositional range while the SEM pictures have detected metallic silver or Ag2O clusters dispersed in the glass network. Acting as complementary spectroscopic techniques, both types of measurements, FT-IR and Raman, revealed that the network structure of the studied glasses is mainly based on BO3 and BO4 units placed in different structural groups, the BO3 units being dominant. The influence of manganese-ion content (x), on the NBO4/NBO3 ratio evolution was investigated.  相似文献   

12.
《Journal of Non》2007,353(32-40):3314-3317
The ionic conductivity of several chalcogenide glasses increases abruptly with mobile ion addition from values typical of insulating materials (10−16–10−14 Ω−1 cm−1) to values of fast ionic conductors (10−7–10−1 Ω−1 cm−1). This change is produced in a limited concentration range pointing to a percolation process. In a previous work [M. Kawasaki, J. Kawamura, Y. Nakamura, M. Aniya, Solid State Ionics 123 (1999) 259] the transition from semiconductor to fast ionic conductor of Agx(Ge0.25Se0.75)100−x glasses was detected at x1  10 at.% in the form of a steep change in the conductivity. Agx(Ge0.25Se0.75)100−x glasses with x  25 at.%, prepared by a melt quenching method, are investigated by impedance spectroscopy in the frequency range 5 Hz–2 MHz at different temperatures, T, from room temperature to 363 K and by DC measurements at room temperature. The conductivity of the glasses, σ, was obtained as a function of silver concentration and temperature. For x  10 at.% our results are in agreement with those reported by Kawasaki et al. [M. Kawasaki, J. Kawamura, Y. Nakamura, M. Aniya, Solid State Ionics 123 (1999) 259]. The percolation transition was observed in the range 7  x  8. The temperature dependence of the ionic conductivity follows an Arrhenius type equation σ = (σo/T) · exp(−Eσ/kT). The activation energy of the ionic conductivity, Eσ, and the pre-exponential term, σo, are calculated. The results are discussed in connection with other chalcogenide and chalcohalide systems and linked with the glass structures.  相似文献   

13.
Structure and optical properties of MoO3-doped lead borate glasses which contain high PbO content (60, 70 and 80%) have been studied using Fourier transform infrared (FTIR) and ultraviolet–visible (UV–VIS) spectroscopic tools. FTIR spectra reveal absorption bands which are characteristic for various structural units of borate network, mainly BO3 triangles and BO4 tetrahedra, in addition to the PbOn (where n = 3 and/or 4) structural units. UV–VIS optical absorption spectra reveal broad intense charge transfer UV bands due to Pb2 + ions in the range 320–385 nm. Within this range, molybdenum ions, preferably Mo3 + and Mo5 +, can interfere at about 360–385 nm. Additionally, molybdenum ions give a weak visible band at about 850–860 nm. The optical absorption spectra of the studied glasses show marked resistance to successive gamma irradiation up to 5 Mrad. This shielding behavior can be related to the present high content of the high atomic mass Pb2 + ions. Changes in the atomic structure before and after gamma irradiation are described and explained.  相似文献   

14.
Fast ion conducting (FIC) phosphate glasses and glass ceramic composites have gained considerable importance due to their potential applications in the fabrication of solid-state batteries and other electrochemical devices. We, therefore, present an overview on various types of FIC glasses and glass ceramic composites. Silver phosphate glasses doped with different weight percent of lithium chloride (1, 5, 10 and 15 wt.%) were synthesized by melt quenching technique. The Ag2O–P2O5–(15 wt.%) LiCl glass exhibited the maximum electrical conductivity (σ = 8.91 × 10? 5 S cm? 1 at room temperature and 4.16 × 10? 3 S cm? 1 at 200 °C). Using this glass as an amorphous host material, glass–ceramic composites of Ag2O–P2O5–(15 wt.%) LiCl:xAl2O3 (x = 5–50 wt.%) were prepared. The ionic transference number, electrical conductivity, ionic mobility and carrier ion concentration of the synthesized samples were measured. Ag2O–P2O5–(15 wt.%) LiCl:(25 wt.%) Al2O3 composite system exhibited the maximum σ value (σ = 3.32 × 10? 4 S cm? 1 at room temperature and 2.88 × 10? 2 S cm? 1 at 200 °C ). Solid‐state batteries using undoped Ag2O–P2O5 glass, Ag2O–P2O5–(15 wt.%) LiCl glass and glass ceramic composite containing 25 wt.% Al2O3 as electrolytes were fabricated. The open circuit voltage (OCV) values and discharge time of these cells were measured and compared. It is found that the glass ceramic composites show enhanced ionic conduction, better OCV value and discharge characteristics.  相似文献   

15.
Marcel Miglierini 《Journal of Non》2008,354(47-51):5093-5096
In the present work, we have investigated progress of crystallization in the Fe91?xMo8Cu1Bx (x = 12, 15, 17, 20) alloy as a function of annealing temperature. This material belongs to the family of the Fe–M–B–(Cu) alloys (transition metal M = Zr, Nb, Hf, Mo, …) called also NANOPERM. The alloy was found to contain small amounts (<5%) of bcc Fe(Mo) and Mo2FeB2 nanocrystallites (<2 nm) located on the surface of the ribbon-shaped samples already in the as-quenched state. Depending upon composition, the nanocrystallites are formed on the air and/or wheel side of the ribbon. They are characterized by atomic force microscopy, conversion electron Mössbauer spectroscopy, and by X-ray diffraction of synchrotron radiation. Fast detection (every 10 s) of the latter during continuous heating of as-quenched specimens enabled an in situ observation of the evolution of the crystallization. For x = 12, the crystallization starts earlier at the wheel side of the ribbon but its progress is more rapid at the opposite, i.e. air side.  相似文献   

16.
《Journal of Non》2006,352(30-31):3310-3314
The structure of superionic glasses in ternary systems x(0.4Li2S–0.6P2S5)–(1  x)LiI and x(0.5Li2S–0.5P2S5)–(1  x)LiI (x = 0.9, 0.75) has been studied by molecular dynamics (MD) simulations. The configurations obtained by MD were analyzed by graph theory. Phosphorus is surrounded by sulfur and iodine atoms. Li is surrounded by sulfurs alone and LiI clusters are not present as speculated by earlier spectroscopic reports. The equilibrium configuration is made up of (Li, S) and (P, S, I) rich regions which creates wide channels for Li+ movement. Reported variations of glass transition temperature (Tg) and ionic conductivity (σ) with LiI addition are explained based on the simulation results.  相似文献   

17.
Glass samples have been prepared in the NaPO3–KHSO4 binary system with the classical melting, casting and annealing steps. Electrical and dielectrical properties of glass samples were studied. Measurements of DC and AC conductivity and complex electrical permittivity of xNaPO3–(100 ? x)KHSO4 glass system were carried out at temperatures ranging from room temperature to temperature located 15 °C below glass transition temperature Tg. Results showed that changes of NaPO3 concentration considerably affect values of observed parameters. DC conductivity of glass increases as NaPO3 concentration grows until concentration x = 60. However, beyond this value a sharp decrease of DC conductivity was observed. In addition relaxation times showed abrupt changes at concentration x = 60, corresponding to the lowest relaxation times at the temperature 90 °C.  相似文献   

18.
Bulk Fe80?xMoxP10C7.5B2.5 (x = 5–10 at.%) metallic glasses are synthesized by copper mold casting, which have a critical diameter up to 3 mm, fracture strength over 3000 MPa, plastic strain up to 2.5% and saturation magnetization reaching 1.1 T. Results show that the glass forming ability and strength increase with increasing Mo content, while the plasticity and saturation magnetization do otherwise. These Mo content dependent properties are illuminated with the atomic interactions in the alloys that could be strengthened by suitable addition of Mo element. The effects of Mo on the properties of the alloys imply that proper Mo element should be chosen in designing Fe-based glassy alloys with desired properties.  相似文献   

19.
Raman scattering spectra of Ga2S3–2MCl (M = K, Rb, Cs) glasses have been conducted at room temperature. Based on the analysis of the local co-ordination surroundings of Cs+ ions, the similarities and differences of Raman spectra for the glass Ga2S3–2CsCl and the bridged molecular GaCl3 were explained successfully. Through considering the effect of M+ ions on mixed anion units [GaS4?xClx] and bridged units [Ga2S6?xClx] and the corresponding microstructural model, the Raman spectral evolution of the Ga2S3–2MCl (M = K, Rb, Cs) glasses was reasonably elucidated.  相似文献   

20.
《Journal of Non》2006,352(21-22):2288-2291
The effect of Sn addition on the glass transition and structure of c-Sb20Se80 chalcogenide alloy have been studied by X-ray diffraction and differential scanning calorimetric studies. The increase in the glass forming region and the glass transition temperature with the addition of Sn is discussed by considering the formation of [SnSe4] tetrahedra, another type of network former, which inhibits the crystallization. The differential scanning calorimetric studies on SnxSb20Se80−x (8  x  18) glassy samples reveal a single glass transition temperature for all values of x while a single crystallization peak was obtained only for 10  x < 12. The X-ray diffraction studies reveal that the glass crystallizes to Sb2Se3 and SnSe2 phases upon annealing. The glass formation and composition dependence of glass transition temperature in the Sn–Sb–Se chalcogenide alloy could be understood by considering the topological phase transitions and a chemically ordered network model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号