首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimental isothermal (vapour + liquid) equilibrium (VLE) data are reported for the binary mixture containing 1-butyl-3-methylimidazolium iodide ([bmim]I) + 1-butanol at three temperatures: (353.15, 363.15, and 373.15) K, in the range of 0 to 0.22 liquid mole fraction of [bmim]I. Additionally, refractive index measurements have been performed at three temperatures: (293.15, 298.15 and 308.15) K in the whole composition range. Densities, excess molar volumes, surface tensions and surface tension deviations of the binary mixture were predicted by Lorenz–Lorentz (nD-ρ) mixing rule. Dielectric permittivities and their deviations were evaluated by known equations. (Vapour + liquid) equilibrium data were correlated with Wilson thermodynamic model while refractive index data with the 3-parameters Redlich–Kister equation by means of maximum likelihood method. For the VLE data, the real vapour phase behaviour by virial equation of state was considered. The studied mixture presents S-shaped abatement from the ideality. Refractive index deviations, surface tension deviations and dielectric permittivity deviations are positive, while excess molar volumes are negative at all temperatures and on whole composition range. The VLE data may be used in separation processes design, and the thermophysical properties as key parameters in specific applications.  相似文献   

2.
Densities, speeds of sound, viscosities and refractive indices of two binary systems 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] + methanol and 1-ethyl-3-methylimidazolium tetrafluoroborate [emim][BF4] + methanol, as well as of all pure components, have been measured covering the whole range of compositions at T = (278.15 to 318.15) K and p = 101 kPa. From this data, excess molar volumes, excess isentropic compressibilities, viscosity deviations and refractive index deviations were calculated and fitted to extended versions of the Redlich–Kister equation. Estimated coefficients of these equations taking into account the dependence on composition and temperature simultaneously were also presented.  相似文献   

3.
The effect of temperature on the physical properties of some ionic liquids was investigated. Density, refractive index, surface tension, dynamic and kinematic viscosities of 1-butyl-3-methylimidazolium based ionic liquids with thiocyanate and tetrafluoroborate, and 1-hexyl-3-methylimidazolium with tetrafluoroborate and hexafluorophosphate anions were measured at various temperatures (density from T = (278.15 to 363.15) K, refractive index from (293.15 to 343.15) K, surface tension from (283.15 to 333.15) K, dynamic viscosity from (283.15 to 368.15) K, and kinematic viscosity from (298.15 to 363.15) K). The volumetric properties for the ionic liquids were also calculated from the experimental values of the density at T = 298.15 K. The Vogel–Fulcher–Tammann (VFT) equation was applied to correlate experimental values of dynamic and kinematic viscosities as a function of temperature. As well, the relation between density and refractive index was correlated satisfactorily with several empirical equations such as Lorentz–Lorenz, Dale–Gladstone, Eykman, Oster, Arago–Biot, Newton and Modified–Eykman. Finally, the relation between surface tension and viscosity was investigated and the parachor method was used to predict density, refractive index and surface tension of the ionic liquids.  相似文献   

4.
Pressure, density, temperature (p, ρ, T) data of 1-butyl-3-methylpyridinium tetrafluoroborate [C4mpyr][BF4] at T = (283.15 to 393.15) K and pressures up to p = 100 MPa are reported with an estimated experimental relative combined standard uncertainty of Δρ/ρ = ±(0.01 to 0.08)% in density. The measurements were carried out with a newly constructed Anton-Paar DMA HPM vibration-tube densimeter. The system was calibrated using double-distilled water, methanol, toluene and aqueous NaCl solutions. An empirical equation of state for fitting of the (p, ρ, T) data of [C4mpyr][BF4] has been developed as a function of pressure and temperature to calculate the thermal properties of the ionic liquid (IL), such as isothermal compressibility, isobaric thermal expansibility, differences in isobaric and isochoric heat capacities, thermal pressure coefficient and internal pressure. Internal pressure and the temperature coefficient of internal pressure data were used to make conclusions on the molecular characteristics of the IL.  相似文献   

5.
Density (ρ), refractive index (nD) and speed of sound (u) values are measured for the binary mixture of 1-butyl-3-methylimidazolium tetrafluoroborate and N-octyl-2-pyrrolidone over the entire range of mole fraction at temperatures from T = (298.15 to 323.15) K under atmospheric pressure. Using the basic experimental data, various acoustic and excess thermodynamic parameters are calculated and are discussed in terms of molecular interactions between the present investigated binary system. The excess values are fitted to Redlich–Kister polynomial equation to estimate the binary coefficients and standard deviation between the experimental and calculated values. Further, the molecular interactions in the binary mixture system are analysed using the experimental FT-IR spectrum recorded at room temperature.  相似文献   

6.
Density, ρ, speed of sound, u, and refractive index, nD, at 298.15 K and atmospheric pressure have been measured over the entire composition range for (toluene + methyl acetate + butyl acetate) and (toluene + methyl acetate + methyl heptanoate) systems. Excess molar volumes, VE, isentropic compressibility, κs, isentropic compressibility deviations, Δκs, and changes of refractive index on mixing, ΔnD, for the above systems, have been calculated from experimental data and fitted to Cibulka, Singh et al., and Nagata and Sakura equations, standard deviations from the regression lines are shown. Geometrical solution models, Tsao and Smith, Kholer, Jacob and Fitzner, Rastogi et al. were also applied to predict ternary properties from binary contributions.  相似文献   

7.
Density ρ, viscosity η, and refractive index nD, values for (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures over the entire range of mole fraction have been measured at temperatures (298.15, 303.15, and 308.15) K at atmospheric pressure. The speed of sound u has been measured at T = 298.15 K only. Using these data, excess molar volume VE, deviations in viscosity Δη, Lorentz–Lorenz molar refraction ΔR, speed of sound Δu, and isentropic compressibility Δks have been calculated. These results have been fitted to the Redlich and Kister polynomial equation to estimate the binary interaction parameters and standard deviations. Excess molar volumes have exhibited both positive and negative trends in many mixtures, depending upon the nature of the second component of the mixture. For the (tetradecane + chlorobenzene) binary mixture, an incipient inversion has been observed. Calculated thermodynamic quantities have been discussed in terms of intermolecular interactions between mixing components.  相似文献   

8.
Thermophysical properties, {(p, ρ, T) at T = (283.15 to 393.15) K, pressures up to p = 100 MPa, and viscosity at T = (283.15 to 373.15) K and p = 0.101 MPa}, of 1-butyl-4-methylpyridinium tetrafluoroborate [b4mpy][BF4] are reported. The measurements were carried out with a recently constructed Anton-Paar DMA HPM vibration-tube densimeter and a fully automated SVM 3000 Anton-Paar rotational Stabinger viscometer. The vibration-tube densimeter was calibrated using double-distilled water, methanol, toluene, and aqueous NaCl solutions.An empirical equation of state for fitting of the (p, ρ, T) data of [b4mpy][BF4] has been developed as a function of pressure and temperature to calculate the thermal properties of the ionic liquid (IL), such as isothermal compressibility, isobaric thermal expansibility, differences in isobaric and isochoric heat capacities, thermal pressure coefficient, and internal pressure. Internal pressure and the temperature coefficient of internal pressure data were used to make conclusions on the molecular characteristics of the IL.  相似文献   

9.
We studied the photochromism of a newly synthesized ionic liquid, [2PA-Bmim]Tf2N ([2PA-Bmim]+: 3-butyl-1-methyl-2-phenylazoimidazolium, Tf2N?: bis(trifluoromethanesulfonyl)-amide) which is characterized by a phenylazo group substituted on the imidazolium ring. The melting point of [2PA-Bmim]Tf2N is 329 K. The absorption spectrum of [2PA-Bmim]+ dissolved in conventional organic solvents or in ionic liquids changes drastically upon UV-light irradiation, which is attributed to the photoisomerization of the phenylazo group from E- to Z-forms during irradiation and the backward thermal isomerization from Z- to E-forms in the dark. The E–Z photoisomerization quantum yield, Φiso, was determined by 355 nm laser photolysis. The Φiso value slightly depends on solvent viscosity, from 0.12 in 3-butyl-1-methylimidazolium PF6? (η = 241 cP) to 0.19 in toluene (η < 1 cP). On the other hand, no solvent dependence was observed for Arrhenius parameters of the backward Z–E thermal isomerization. We discuss the isomerization mechanism and the reason why the E–Z photoisomerization yield depends on solvent viscosity.  相似文献   

10.
Densities and viscosities of binary ionic liquids mixtures, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([eOHmim][BF4]) + 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([eOHmim][BF4]) + N-butylpyridinium tetrafluoroborate ([bpy][BF4]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) + N-butylpyridinium tetrafluoroborate ([bpy][BF4]) were measured over the entire mole fraction from T = (298.15 to 343.15) K. The excess molar volumes were calculated and correlated by Redlich–Kiser polynomial expansions. The viscosities for pure ionic liquids were analyzed by means of the Vogel–Tammann–Fulcher equation and ideal mixing rules were applied for the ILs mixtures.  相似文献   

11.
Densities, speeds of sound and refractive indices have been measured for (n -hexane  +  cyclohexane  +  1-hexanol) and its corresponding binaries atT =  298.15 K. In addition, ideal isentropic compressibilities were calculated from the speeds of sound, densities, and literature heat capacities and cubic expansion coefficients. The excess molar volumes and excess isentropic compressibilities, and deviations of the speed of sound and refractive index are correlated by polynomials and discussed.The Nitta–Chao model was used to estimate binary and ternary excess molar volumes, and several empirical equations were also used to calculate the excess and deviation properties.  相似文献   

12.
《Fluid Phase Equilibria》2006,248(2):211-216
UV–vis spectroscopy and conductivity measurement techniques were used to study the physicochemical and structural properties of the binary or ternary mixtures of 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) + organic solvent and 1-n-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) + organic solvent systems. The solvents involved were acetonitrile, water, ethanol, ethyl acetate, and tetrahydrofuran. It was indicated that the micropolarity and the aggregation behavior of the mixtures depend strongly on the dielectric constants of the solvents and the composition of the mixtures.  相似文献   

13.
Densities and viscosities were determined for binary mixtures of 2,2,2-trifluoroethanol (TFE) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) or 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([bmim][NTf2]) over the entire range of composition. The experimental measurements were carried out at temperatures ranging from 278.15 K to 333.15 K, at atmospheric pressure. The densities and viscosities of the pure ionic liquids and their mixtures with TFE were described successfully by an empirical third-order polynomial and by the Vogel–Fulcher–Tammann equation, respectively. In addition, excess molar volumes and viscosity deviations were determined from densities and viscosities of mixtures, respectively, and fitted by using the Redlich–Kister equation.  相似文献   

14.
The coexistence curves (T, n), (T, Φ), and (T, Ψ) (n, Φ, and Ψ are the refractive index, volume fraction, and effective volume fraction, respectively) for the ionic liquid microemulsion systems of {polyoxyethylene tert-octylphenyl ether (T-X100) + 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) + cyclohexane} with various molar ratio (ω) of [bmim][BF4] to T-X100 have been determined by measuring refractive indices at a constant pressure in the critical region. The critical temperatures (Tc) and critical volume fraction (Φc) were obtained for the ionic liquid microemulsions. The critical exponents were deduced precisely from the coexistence curves within about 1 K below Tc and the values were consistent with the 3D Ising value.  相似文献   

15.
Experimental densities, speeds of sound and refractive indices of the binary mixtures of ethanol with MMIM MeSO4 (1,3-dimethylimidazolium methyl sulfate), BMIM MeSO4 (1-butyl-3-methylimidazolium methyl sulfate), BMIM PF6 (1-butyl-3-methylimidazolium hexafluorophosphate), HMIM PF6 (1-hexyl-3-methylimidazolium hexafluorophosphate) and OMIM PF6 (1-methyl-3-octylimidazolium hexafluorophosphate) were determined from T = (293.15 to 303.15) K. Excess molar volumes, changes of refractive index on mixing and deviations in isentropic compressibility for the above systems were calculated. The (liquid + liquid) equilibrium (LLE) data of (IL + ethanol) were carried out experimentally and the NRTL and UNIQUAC correlative equation was applied to these mixtures.  相似文献   

16.
Vapour pressures were measured using a quasi-static ebulliometer for the binary mixture of (water + ethanol) containing one of three protonic ionic liquids (PIL), namely, mono-, di- or tri-ethanolammonium tetrafluoroborate, over the temperature range of (318.24 to 356.58) K at fixed PIL content of 0.30 in mass fraction. The vapour pressure data of the PIL-containing ternary systems were correlated using the NRTL equation with an overall root mean square deviation (RMSD) of 0.0092. The regressed NRTL parameters were used to predict the isobaric vapour liquid equilibria (VLE) for ternary systems (water + ethanol + PIL) at varying mass fraction of PIL and atmospheric pressure (101.3 kPa). It is shown that the effect of PILs on the VLE of the (water + ethanol) mixture follows the order: [HTEA][BF4] > [HDEA][BF4] > [HMEA][BF4]. In addition, the relative volatilities of ethanol to water for pseudo-binary systems (water + ethanol + PIL) were calculated. The results indicate that the PILs studied can enhance the relative volatility of ethanol to water and even break the azeotropic behaviour of ethanol aqueous solution when PIL content is increased to a specified content.  相似文献   

17.
Densities ρ, speeds of sound u, and refractive indices nD were measured from T = (278.15 to 343.15) K. Dynamic viscosities η were measured from T = (293.15 to 323.15) K. Surface tensions σ were determined from T = (288.15 to 313.15) K. The physical properties data were measured at atmospheric pressure. The coefficients of thermal expansion αp of the ionic liquids were calculated from the experimental values of the density at several temperatures. The Parachor method was used to predict the densities, the refractive indices, and the surface tensions of the ionic liquids, and a comparison between experimental and predictive values was made at T = 298.15 K.  相似文献   

18.
In the present work, density and viscosity of two binary mixtures of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) with 1-butyl-3-methylimidazolium acetate ([bmim][acetate]) are measured. The experiments were carried out at atmospheric pressure and at T = (293.15 to 343.15) K for density and from 293.15 K to 353.15 K for viscosity over the whole range of mole fraction. Using the density and viscosity results, several physical and thermodynamic properties such as excess molar volumes (VE), coefficients of thermal expansions (α), viscosity deviation (Δη),molar activation entropy (ΔS), molar activation enthalpy (ΔH) and molar activation Gibbs free energy (ΔG) for these binary mixtures are calculated.The experimental results of the density and viscosity for the pure systems as well as the binary systems show a decrease with increasing temperature as expected. The results of density measurements show that over all ranges of temperatures investigated the density of the pure components show the following trend: DEA > [bmim][acetate] > MDEA. Therefore, in the binary mixtures of the (MDEA + [bmim][acetate]), the density of the mixture reduces with decreasing concentration of the ionic liquid and for the (DEA + [bmim][acetate]) mixture the density of the blend enhances to reduce the concentration of the ionic liquid. Moreover, the calculated excess molar volumes show a positive deviation from ideality for the two binary mixtures. The behaviour of change of viscosity against concentration for the (MDEA + [bmim][acetate]) system is different from the (DEA + [bmim][acetate]) mixture so that for the first system the value of the viscosity rises with increasing [bmim][acetate] mole fraction, but in the second system there is a minimum viscosity point in the DEA-rich region.  相似文献   

19.
《Fluid Phase Equilibria》2006,239(2):146-155
This work reports the measured density, ρ, and viscosity, η, values of liquid mixtures of tetrahydrofuran (1) + 1-chlorobutane (2) + 2-butanol (3) at temperatures of 283.15, 298.15 and 313.15 K over a range of mole fractions and atmospheric pressure. Excess molar volume, VE, viscosity deviations, Δη, and excess free energies of activation of viscous flow, ΔG*E, have been calculated from experimental data and fitted to Cibulka, Singh et al. and Nagata and Sakura equations. The results were analyzed in terms of the molecular interaction between the components of the mixtures. Excess molar volumes and viscosity deviations were predicted from binary contributions using geometrical solution models, Tsao and Smith; Jacob and Fitzner; Kholer; Rastogi et al.; Radojkovic et al. Finally, experimental results are compared with those obtained by applying group-contribution method proposed by Wu.  相似文献   

20.
Refractive indices of ternary mixtures formed by (water + ethanol + k-ethylene glycol) (when k is mono, di or tri) and (water + t-butanol + dimethyl sulfoxide) are presented over a wide range of mixture compositions. All measurements have been conducted at 298.15 K and atmospheric pressure using two light sources: one in the visible (λ = 670 nm) and the other in the infrared (λ = 925 nm) spectrum. The performance of several mixing rules that are commonly used in modeling optical constants are examined. We demonstrate that the refractive indices of the associated ternary mixtures can be modeled with a relative error of about 0.9% by using the thermodynamical properties of the pure components. The concentration derivatives of the refractive index are an important parameter, as they are required for different experimental techniques. These derivatives have been determined from the experimental data on refractive indices. However, applying mixing rules for calculation of the derivatives of the refractive indices with respect to concentrations does not provide satisfactory results in the case of ternary mixtures of associated liquids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号