首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Journal of Non》2006,352(23-25):2565-2568
Yttrium doped ZnO nanostructures were synthesized at room temperature by sol–gel technique. The sols were prepared using zinc acetate di-hydrate and ethanol as the precursors with yttrium nitrate hexahydrate as the dopant. Lactic acid with water was used as the acidic catalyst to control the hydrolysis reaction. Ammonia was added to vary the pH of the solution and the shape of the nanostructures changed with the change in pH of the solution. The films were deposited on ultrasonically cleaned glass substrates by dip coating technique. X-ray diffraction patterns indicated that the obtained nanostructures were polycrystalline in nature with (1 0 0), (0 0 2) and (1 0 1) reflections of hexagonal ZnO crystal structure. The ZnO films exhibited nanostructures with a rod/lathe like morphology on changing the yttrium concentration. The diameters of the structures varied from 100 nm to 250 nm and the aspect ratio was found to be in the range of 50–70.  相似文献   

2.
Tin oxide (SnO2) nanorods were synthesized through an aqueous hexamethylenetetramine (HMTA) assisted synthesis route and their structural evolution from core–shell type faceted pyramidal assembly was investigated. Structural analysis revealed that the as-synthesized faceted SnO2 structures were made of randomly arranged nanocrystals with diameter of 2–5 nm. The shell thickness (0–80 nm) was dependent on the molar concentration of HMTA (1–10 mM) in aqueous solution. It was revealed that the self-assembly was possible only with tin (II) chloride solution as precursor and not with tin (IV) chloride solution. At longer synthesis hours, the pyramidal nanostructures were gradually disintegrated into single crystalline nanorods with diameter of about 5–10 nm and length of about 100–200 nm. The SnO2 nanorods showed high sensitivity towards acetone, but they were relatively less sensitive to methane, butane, sulfur dioxide, carbon monoxide and carbon dioxide. Possible mechanisms for the growth and sensing properties of the nanostructures were discussed.  相似文献   

3.
This work deals with X-ray photoemitted spectra (XPS) from materials which are of interest for photonic applications. In particular xHfO2 ? (100 ? x) SiO2 (x = 10, 20, 30 mol%) glass–ceramics planar waveguides and silver ion-exchanged (0.5, 1.5, 5 mol%) sodalime glasses are investigated. The aim of the work is to explore the material structural changes occurring at the nanometric scale which are produced during the fabrication process in order to enlighten the formation of the nanostructures. The results show that XPS is sufficiently sensitive to detect the formation of nanostructures in the analyzed materials providing at the same time also chemical information. Both these inputs are important to tune the production processes to increase the efficiency of the optical devices.  相似文献   

4.
In this work, refractive index and extinction coefficient spectra of germanium nanoclusters – rich SiO2 layers have been determined using variable angle spectroscopic ellipsometry (VASE) in the 250–1000 nm range. The samples were produced by Ge+ ion implantation into SiO2 layers on Si substrates and subsequent annealing at temperatures from 700 to 1100 °C. It is known from previous investigations of similar samples that the Ge nanoclusterization process starts already at 800 °C and spherical Ge nanocrystallites 5–8 nm in diameter are observed in the SiO2 layers after annealing for 1 h at even higher temperatures of 1000–1100 °C. Rutherford backscattering spectrometry (RBS) was employed to measure the Ge atom concentration depth profiles in the studied samples. The RBS results helped us choose realistic models for the VASE analysis which were necessary for a proper interpretation of the VASE data. It has been found that the refraction index value for the SiO2/Si layer increases after Ge implantation. This effect can be explained by a defect-dependent compaction of ion-bombarded layers. A band’s tail in the extinction coefficient spectra for all the samples is observed which originates from a strong ultraviolet absorption band at 6.8 eV due to a Germanium Oxygen-Deficiency Center (GeODC) and/or a Ge-E’center in SiO2. The annealing process results in the emergence of weaker extinction coefficient bands in the 400–600 nm region, associated with direct band-to-band transitions in Ge nanostructures. Transformation of these bands, including their blue-shift with the increasing annealing temperature could be explained via a quantum-confinement mechanism, by size and structural changes in Ge nanostructures.  相似文献   

5.
《Journal of Crystal Growth》2006,286(2):457-464
Heteroepitaxial KNbO3 thin films and nanostructures were grown hydrothermally on (1 0 0)-oriented single-crystal SrTiO3 substrates at 125–200 °C in 15 M KOH solutions. The KNbO3 film grew with the orthorhombic structure and displayed both {1 1 0)o and (0 0 1)o orientations as anisotropic lattice expansion reduced the difference in lattice mismatch seen by each orientation. After an initial period of approximately planar growth, the film gave rise to an array of nano-sized tower-like structures apparently growing by a dislocation-assisted mechanism. It is suggested that the anisotropic growth is further promoted by a combination of decreasing supersaturation and the increased effect of adsorbed impurities on the growth front.  相似文献   

6.
《Journal of Non》2006,352(21-22):2236-2242
We have investigated the etching mechanism in Cr–O doped GaAs wafer under super- and sub-bandgap photon illumination. A comparison of the etching rate and properties of nanostructures from two samples which are etched with argon-ion laser (2.41 eV) and Nd:YAG laser (1.16 eV), are presented here. The etching mechanism is found different for these different illuminations, which play the key role in the formation of defects. It is observed that the etching process starts vigorously under sub-bandgap photon illumination through the mediation of intermediate defect states. SEM micrograph shows the formation of distinct GaAs nanostructures in sample etched by Nd:YAG laser. Porous structure produced by Nd:YAG laser shows strong room temperature luminescence in the red region. The size and size distribution of the nanocrystals are investigated by non-destructive Raman and photoluminescence spectroscopies. The data are analyzed within the framework of quantum confinement models.  相似文献   

7.
Nanocrystalline 1%, 2% and 4% Cobalt-doped TiO2 were prepared by sol–gel technique, followed by freeze-drying treatment at ?30 °C temperature for 12 h. The obtained gels were thermally treated at 200, 400, 600 and 800 °C. X-ray Powder Diffraction (XRD), Scanning Electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDAX) were used to study its structural properties. The XRD pattern shows the coexistence of anatase phase and minor brookite phase. UV–vis Spectroscopy and Photoluminescence (PL) were used to study its optical properties. Optical band gap was calculated with the incorporation of different concentrations of cobalt. UV–visible spectroscopy shows variation in band gap for the sample treated at different temperatures for same concentration. All Cobalt doped TiO2 nanostructures show an appearance of Red shift relative to the bulk TiO2. The determination of magnetic properties was also carried out by Gouy balance method.  相似文献   

8.
Silver nanoparticles, produced by thermal evaporation and a subsequent annealing treatment, were integrated at the back side of thin-film silicon solar cells. Metallic nanoparticles can lead to (i) a strong enhancement of the electric field in their surrounding when they are irradiated by light and (ii) significant scattering of the light when they have the proper diameter (>100 nm). In this study, we investigated the optical properties of two types of substrates, one with large and well separated ellipsoidal silver nanoparticles (with average lateral size of 300 nm), and the other with silver nanostructures connected to each other. Furthermore, these substrates were used as back reflectors in microcrystalline silicon solar cells in substrate (n–i–p) configuration.  相似文献   

9.
Large-scale synthesis of clustered one-dimensional amorphous silica nanowires was achieved by simple thermal pyrolysis of an amorphous preceramic powder from perhydropolysilazane on alumina wafers coated with catalyst FeCl2. Scanning electron microscopy and transmission electron microscopy observations showed that the silica nanowires had smooth surface, and lengths of hundreds of micrometers and diameters in the range of 30–40 nm. Energy dispersive X-ray spectroscopy revealed that these nanowires consisted of Si and O elements in an atomic ratio of approximately 1:2, consistent with the stoichiometric formula SiO2. The two amorphous bulges in Raman spectrum at the centers of around 260 cm?1 and 800 cm?1 were identified to be those of amorphous silica. The growth mechanism of the as-produced silica nanowires could be attributed to vapor–liquid–solid mechanism. These results provide an alternative and simple preparation procedure for nanostructures with controlled morphology, and it will be helpful to understand the growth mechanism of one-dimensional SiO2 nanostructures.  相似文献   

10.
The hydrothermal method was employed in order to obtain zinc oxide nanorods directly on Si/SiO2/Ti/Zn substrates forming brush-like layers. In the final stages of synthesis, the reaction vessel was naturally cooled or submitted to a quenching process. X-ray diffraction results showed that all the nanostructures grew [0 0 0 1] oriented perpendicular to the substrate. The influence of the cooling process over the morphology and dimensions of the nanorods was studied by scanning electron microscopy. High-resolution transmission electron microscopy images of the quenched samples showed that the zinc oxide (ZnO) crystal surfaces exhibit a thin-layered coating surrounding the crystal with a high degree of defects, as confirmed by Raman spectroscopy results. Photodetectors made from these samples exhibited enhanced UV photoresponses when compared to the ones based on naturally cooled nanorods.  相似文献   

11.
Magnetic nanostructures display new and interesting physical phenomena and are currently used in a large variety of applications. We studied the structural, magnetic and transport properties of Co thin films deposited by ion beam sputtering. We probed the influence of the buffer layer material (Al, Cu, Ru or Ta) and thickness (10–100 Å) on the structural properties of Co thin films. Using X-ray diffraction we observed that textured fcc Co films can be grown on amorphous Ta as thin as 20 Å but for the other buffer layers no texture is observed. We also studied by magneto-optical Kerr effect (MOKE) the magnetic properties of the Co thin films as a function of Co thickness (100–1000 Å). Finally, the electrical resistivity and anisotropic magnetoresistance (AMR) of our Co thin films (on a Ta buffer) was obtained as a function of Co thickness.  相似文献   

12.
Glasses with a high content of niobium oxide are of significant interest for electro-optics and nonlinear optics. In the present paper we report the results of the investigation of the submicroscopic structure and nonlinear optical properties of (1-x)KNbO3xSiO2 (KNS) glasses (x = 0.05–0.30) by XRD, SANS, electron microscopy and second harmonic generation (SHG) technique. Vitreous samples were fabricated by rapid melt cooling, via pressing the melt by steel plates, quenching between rotating metal rolls or splat cooling in air or nitrogen flow. Glasses with x < 0.15 are shown to possess a micro-inhomogeneous structure with regions enriched by SiO2. On the contrary, as-quenched glasses with x > 0.15 are found by SANS to be homogeneous, but form nanostructures enriched by SiO2 after heat-treatment. At temperatures below ~(Tg + 50 °C), SiO2-enriched regions grow slightly, whereas their chemical composition shifts considerably closer to SiO2. The data on the nano-inhomogeneous structure enables clarifying the complicated Tg(x) dependence of KNS glasses. SHG-active KNbO3 phase precipitates at later stages of crystallization when the glass starts to lose its transparency, and crystallization of perovskite-like KNbO3 is accompanied by the enhancement of SHG efficiency by several orders of magnitude.  相似文献   

13.
《Journal of Crystal Growth》2006,286(2):228-234
A facile sacrificial template route was introduced to prepare close CdSe nanochains by the hydrothermal method using Cd(OH)2 as a sacrificial template and precursor. Cd(OH)2 nanoflakes were synthesized by an alkali salt mineralizing hydrothermal process at 200 °C for 20 h, which was the key step in preparing the CdSe nanostructures. Subsequently, the as-prepared Cd(OH)2 nanoflakes were converted into CdSe nanochains in Na2SeSO3 solution by hydrothermal process under through time and temperature control. The as-prepared products were characterized by XRD, TEM, HRTEM and SAED. A possible explanation of the growth mechanism has been proposed. Initially, CdSe nanoparticles are presumed to nucleate on the surface of the sacrificial template of a Cd(OH)2 nanoflake. These particles further grow and assemble into 1-D close or open CdSe nanochains on top of Cd(OH)2 nanoflake skeleton through the Ostwald ripening process. This method is suggested as applicable to synthesizing other chalcogenide nanostructures as well.  相似文献   

14.
Two different growth mechanisms are compared for the fabrication of Si/SiO2 nanostructures on crystalline silicon (c-Si) to be used as hetero-emitter in high-efficiency solar cells: (1) The decomposition of substoichiometric amorphous SiOx (a-SiOx) films with 0 < x < 1.3 and (2) the dewetting of thin amorphous silicon (a-Si) layers.The grown layers are investigated with regard to their structural properties, their passivation quality for c-Si wafer substrates and their electrical properties in order to evaluate their suitability as a nanodot hetero-emitter. While by layer decomposition, no passivating nanodots could be formed, the dewetting process allows fabricating nanodot passivation layers at temperatures as low as 600 °C. The series resistance through Ag/[Si-nanodots in SiO2]/c-Si/Al structures for dewetting is similar to nanostructured silicon rich SiOx films. Still, a nanodot hetero-emitter which exhibits both a satisfying passivation of the substrate and induces a high band bending by doping at the same time could not be fabricated yet.  相似文献   

15.
The sodium borosilicate glass doped with Cu7.2S4 quantum dots was prepared by using both sol–gel and atmosphere control methods. The formation mechanism and the microstructure of the glass were examined using differential thermal analysis and thermal gravimeter (TG-DTA), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray spectra (EDX), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The results revealed that Cu7.2S4 quantum dots in orthorhombic crystal system had formed in the glass, and the size ranged from 9 nm to 21 nm. In addition, Z-scan technique was used to measure the third-order optical nonlinearities of the glass. The results indicated that the third-order optical nonlinear refractive index γ, the absorption coefficient β, and the susceptibility χ(3) of the glass were 1.11 × 10? 15 m2/W, 8.91 × 10? 9 m/W, and 6.91 × 10? 10 esu, respectively.  相似文献   

16.
A. Parvathy Rao  A.V. Rao 《Journal of Non》2009,355(45-47):2260-2271
The experimental results on the preparation of transparent and hydrophobic silica aerogels based on ion exchanged sodium silicate (Na2SiO3) using mixed silylating agents of trimethylchlorosilane (TMCS), hexamethyldisiloxane (HMDSO) and hexamethyldisilazane (HMDZ) are reported. Hydrogels were prepared with ion exchanged Na2Si03 of 1.10 specific gravity with 1 N ammonium hydroxide (NH4OH). The resulted gels were exchanged with methanol solvent followed by silylation using HMDZ + HMDSO or TMCS + HMDZ or TMCS + HMDSO mixture in methanol and hexane and dried the gels at room temperature for 24 h, at 50 and 200 °C for 1 h each. It has been observed that the percentage of the silylating agent in the mixture, time interval of addition of one agent followed by another and volume of silylating mixture have an effect on density, % of optical transmission, % of porosity, porevolume, thermalconductivity and refractive index of the aerogels. Hydrophobicity of the aerogels was studied by contact angle measurements. The TMCS + HMDSO aerogels have been found more hydrophobic (contact angle > 150°) than the other aerogels. Further, aerogels have been characterized by pore size distribution, Fourier Transform Infra Red Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and thermogravimetric analysis and differential thermal analysis (TGA–DTA) techniques. It has been found that the weight increase is the highest (325%) for HMDSO + HMDZ aerogels and lowest (1.2%) for HMDSO + TMCS aerogels by keeping the aerogels in the atmosphere over a period of 18 months. Low density (0.042 g/cc) transparent (85%), low thermal conductive (0.047 W/m K), low refractive index (1.0088) and hydrophobic (152°) silica aerogels were obtained with equivolume TMCS + HMDSO mixture of 10 ml, time interval of addition of 12 h between the two reagents prior addition of TMCS followed by HMDSO for 24 h of silylation period. It was found from the TGA–DTA of the aerogels that hydrophobicity of the aerogels remained up to the temperature of 425 °C.  相似文献   

17.
《Journal of Crystal Growth》2003,247(1-2):110-118
Epitaxial growth of CoO films was studied using reflection high-energy electron diffraction (RHEED), electron energy loss spectroscopy (EELS), ultraviolet photoelectron spectroscopy (UPS) and Auger electron spectroscopy (AES). The RHEED results indicated that an epitaxial CoO film grew on semiconductor and metal substrates (CoO (0 0 1)∥GaAs (0 0 1), Cu (0 0 1), Ag (0 0 1) and [1 0 0]CoO∥[1 0 0] substrates) by constructing a complex heterostructure with two alkali halide buffer layers. The AES, EELS and UPS results showed that the grown CoO film had almost the same electronic structure as bulk CoO. We could show that use of alkali halide buffer layers was a good way to grow metal oxide films on semiconductor and metal substrates in an O2 atmosphere. The alkali halide layers not only works as glue to connect very dissimilar materials but also prevents oxidation of metal and semiconductor substrates.  相似文献   

18.
Glasses of the (20 ? x)CaO–xSrO–(20 ? y)Na2O–60B2O3 ? y (CSNB) system with (5  x  15) mol% and y = 0.1 mol% of V2O5 were characterized by X-ray diffraction (XRD), EPR (Electron Paramagnetic Resonance), Optical absorption Spectra and FT-IR (Fourier transform Infrared Spectroscopy) studies. EPR spectra of all the glass samples exhibit resonance signals characterstic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in CSNB glasses were present in octahedral sites with tetragonal compression and belong to C4v symmetry. Spin-Hamiltonian parameters ‘g’ and ‘A’ were evaluated. The Optical band energy (Eopt) and Urbach energy (ΔE) were calculated from their ultra violet edges. By correlating EPR and Optical data the molecular orbital coefficients have been evaluated. IR spectra of these glasses were analyzed in order to identify the contribution of each component to the local structure that determines the physical properties of these glasses.  相似文献   

19.
High-quality ZnO films were grown on Si(1 0 0) substrates with low-temperature (LT) ZnO buffer layers by an electron cyclotron resonance (ECR)-assisted molecular-beam epitaxy (MBE). In order to investigate the optimized buffer layer temperature, ZnO buffer layers of about 1.1 μm were grown at different growth temperatures of 350, 450 and 550 °C, followed by identical high-temperature (HT) ZnO films with the thickness of 0.7 μm at 550 °C. A ZnO buffer layer with a growth temperature of 450 °C (450 °C-buffer sample) was found to greatly enhance the crystalline quality of the top ZnO film compared to others. The root mean square (RMS) roughness (3.3 nm) of its surface is the smallest, compared to the 350 °C-buffer sample (6.7 nm), the 550 °C-buffer sample (7.4 nm), and the sample without a buffer layer (6.8 nm). X-ray diffraction (XRD), photoluminescence (PL) and Raman scattering measurements were carried out on these samples at room temperature (RT) in order to characterize the crystalline quality of ZnO films. The preferential c-axis orientations of (0 0 2) ZnO were observed in the XRD spectra. The full-width at half-maximum (FWHM) value of the 450 °C-buffer sample was the narrowest as 0.209°, which indicated that the ZnO film with a buffer layer grown at this temperature was better for the subsequent ZnO growth at elevated temperature of 550 °C. Consistent with these results, the 450 °C-buffer sample exhibits the highest intensity and the smallest FWHM (130 meV) of the ultraviolet (UV) emission at 375 nm in the PL spectrum. The ZnO characteristic peak at 438.6 cm−1 was found in Raman scattering spectra for all films with buffers, which is corresponding to the E2 mode.  相似文献   

20.
The experimental results on silica aerogels with super hydrophobic property are reported. Silica alcogels were prepared via a two-step acid/base process by keeping the molar ratio of tetraethyoxysiliane (TEOS), ethanol (EtOH), water (H2O), hydrochloric acid (HCl) and ammonia (NH4OH) constant at 1:6:8:1.0 × 10?3:1.1 × 10?2, respectively, and varying the molar ratio of N,N-dimethylformamide (DMF)/TEOS (G) from 0 to 1.2. After two aging treatment steps, they were modified by isopropyl alcohol (IPA)/trimethylchlorosilane (TMCS)/n-hexane solution at 60 °C. It was found that G value at 0.8 resulted in low density (~0.2 g cm?3) and the minimum volume shrinkage (~6%), with the total water adsorption ratio ~5.1% when exposed to water for 3 months and the contact angle θ  178°. Besides, the aerogels (G = 0.8) had higher volume fractal dimension (~1.8), which indicted that it possessed better connectivity and more uniform particle sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号