首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrafast third-order optical nonlinearity of Ge–Ga–Ag–S chalcogenide glasses at the wavelength of 820 nm has been measured using femtosecond time-resolved optical Kerr (OKE) technique. The results show that Ge–Ga–Ag–S glasses have large third-order optical nonlinear susceptibility, χ(3) and the response time is also subpicosecond, which are predominantly due to the ultrafast distortion of electron cloud surrounding the balanced positions of Ge, Ga, Ag and S atoms. What’s more, a strong dependence of χ(3) on the composition and microstructure of these glasses was found which shows that [GeS4] and [GaS4] tetrahedra play an important role on the third-order optical nonlinearity. These Ge–Ga–Ag–S chalcogenide glasses would be expected as promising materials applied on all-optical switching devices.  相似文献   

2.
We have investigated the fluorescence lifetimes of Dy3+: 1.3 μm emission in the chalcogenide Ge–As–S glasses with different compositions but identically containing 0.5 mol% Ga and 0.5 mol% CsBr. The measured lifetimes turn out to be sensitive not only to the concentrations of Ga and CsBr but also to compositional variations in the Ge–As–S host glasses. The lifetime is enhanced conspicuously in glass of the S-sufficient compositions, relative to the stoichiometric GeS2–As2S3 composition, while this effect is not significant in the S-exact and S-deficient compositions. We employ Ga K-edge EXAFS analysis to support that the local structural environments of Ga in the modified chalcogenide glasses are closely correlated with the lifetime enhancement effect.  相似文献   

3.
Optical absorption, luminescence excitation and emission spectra of Er3+ centres in Ca3Ga2Ge3O12:Er glass with Er content of 1.46 wt% are presented and analysed. Luminescence kinetics for the main Er3+ transitions was satisfactorily described by single exponential decays with characteristic lifetimes. Oscillator strengths, phenomenological Judd–Ofelt intensity parameters, radiative decay rates (emission probabilities of transitions), branching ratios and radiative lifetimes for Er3+ centres in Ca3Ga2Ge3O12:Er glass are calculated and compared with the corresponding parameters of the Ca3Sc2Ge3O12:Er3+ garnet and other crystals and glasses. Quantum efficiency, η, of the 4I13/2  4I15/2 Er3+ transition is determined. Incorporation peculiarities and local structure of Er3+ luminescence centres in Ca3Ga2Ge3O12:Er3+ glass are discussed in comparison with garnet crystals and oxide glasses. On the basis of the presented results and referenced EXAFS data for Er, Eu and Ho impurities (L3-edge) it has been shown that Er3+ centres in Ca3Ga2Ge3O12 glass occupy network sites with the coordination number to oxygen of N = 6.  相似文献   

4.
Two series of Er3+-doped tellurite glasses with different glass modifiers were prepared by the conventional melt-quenching method. In order to estimate the effect of cationic field strength z/a2 of modifiers on the fluorescence properties, the fluorescence spectra were measured. The strength parameters Ωt (t = 2, 4, 6) for all the samples were calculated based on the absorption spectra and also compared between them. The values of Ω6 decrease with decreasing of the cationic field strength z/a2 of modifiers. As the cationic field strength decrease, the polarization effect of the ligand fields around Er3+ increase in the glasses, and which leads to the decreasing of fluorescence peak intensity and bandwidth. The strength of interactions between Er3+ ions and OH? groups, kOH–Er, depend on the glass composition, are changed with glass modifiers.  相似文献   

5.
Dysprosium doped GexGa5Se(95?x) (x = 15–30) chalcogenide glasses were synthesized in this present work. The Vis–NIR transmission spectra, photoluminescence spectra and lifetime were measured. Glasses (x = 27.5, 29.17 and 30) doped with 0.2 wt% dysprosium ions shows relatively strong emission bands at 1146 and 1343 nm when pumped at 808 nm. The emission lifetime ranged from 440 to 540 μs. The oscillator strengths and intensity parameters Ωt (t = 2, 4 and 6) were calculated using Judd–Ofelt theory.  相似文献   

6.
Tm3+-doped and Tm3+/Yb3+-codoped TeO2–ZnO–Bi2O3 (TZB) glasses are prepared by melt-quenching method. The Judd-Ofelt intensity parameters (Ωt t = 2, 4, 6), radiative transition rate, and radiative lifetime of Tm3+ are calculated based on the absorption spectra. The 1.8 μm emission of the samples is investigated under 980 nm laser excitation. The absorption, emission cross-sections, and gain coefficient of Tm3+:3F4  3H6 are calculated. The energy transfer processes of Yb3+–Yb3+ and Yb3+–Tm3+ are analyzed, the results show that the Yb3+ ions can transfer their energy to Tm3+ ions with large energy transfer coefficient, and a maximum efficiency of 79%.  相似文献   

7.
Gao Tang  Cunming Liu  Zhiyong Yang  Lan Luo  Wei Chen 《Journal of Non》2009,355(31-33):1585-1589
Microstructure of the chalcohalide glasses: GeSe2–Ga2Se3–CsI and GeSe2–Ga2Se3–PbI2 ternary system were investigated by Raman spectra, lifetime of Dy3+ infrared emission and glass transition temperature (Tg). The evolution of the Raman spectra shows that the fundamental structural groups of these studied glasses consist of [Ge(Ga)Se4] tetrahedral and some complex structure units [Ge(Ga)IxSe4?x](x = 1–4). The x value varied when the different iodide was added in Ge–Ga–Se matrix. For GeSe2–Ga2Se3–CsI glasses, the [Ge(Ga)IxSe4?x](x = 1–4) mixed-anion tetrahedral and [Ga2I7]? units occurred. For GeSe2–Ga2Se3–PbI2 glasses, the [Ge(Ga)I2Se2], [Ge(Ga)I3Se] units can be formed. The changes of Dy3+ infrared emission lifetime and Tg support the results. Additionally, [PbIn] structural units will be formed in GeSe2–Ga2Se3–PbI2 glasses due to high form-ability of these units when the PbI2 content is high.  相似文献   

8.
Sulphide glasses doped with rare-earth ions have been demonstrated to be suitable for photonic applications such as optical amplifiers, up-converters and fiber lasers. The substitution of metal halides into the glass network has been shown to result glasses with desirable properties in terms of quantum efficiency and fiber manufacture [J.R. Hector, J. Wang, D. Brady, M. Kluth, D.W. Hewak, W.S. Brocklesby, D.N. Payne, Journal of Non-Crystalline Solids 239 (1998) 176]. To assist in the understanding of this improvement a structural analysis of glasses with a composition xCsCl(1 ? x)Ga2S3 has been undertaken in order to examine the nature of the gallium environment. Information collected by high energy X-ray diffraction and neutron diffraction have been analyzed to permit the identification of the structural units as Ga centered tetrahedra. The interconnection between the tetrahedra was found to be predominantly corner sharing.  相似文献   

9.
Rongrong Xu  Ying Tian  Lili Hu  Junjie Zhang 《Journal of Non》2011,357(11-13):2489-2493
TmF3 doped TeO2–ZnO–La2O3 (TZL) glasses and fibers have been prepared by the conventional melt-quenching and suction casting methods, respectively. 2 μm emission properties and energy transfer mechanisms of the TZL glasses and fibers have been analyzed and discussed. The oscillator strength, Judd–Ofelt parameters, radiative transition probability and radiative lifetime of Tm3+ have been calculated based on the absorption spectra and Judd–Ofelt theory. The maximum emission cross-section of Tm3+ is 6.9 × 10?21 cm2 near 2 μm. Emission spectra have been obtained from both TZL fibers and bulk glass when excited with a 794 nm pump. The results of 2 μm emission spectra indicate that the line width of Tm3+ measured in fibers is narrower than that in the bulk glass sample. The peak position of the emission spectra shifts to longer wavelength with increment of the fiber length.  相似文献   

10.
Upon excitation at 808 nm laser diode, an intense 1.47 μm infrared fluorescence has been observed with a broad full width at half maximum (FWHM) of about 124 nm for the Tm3+-doped TeO2-K2O-La2O3 glass. The Judd–Ofelt parameters found for this glass are: Ω2 = 5.26 × 10?20 cm2, Ω4 = 1.57 × 10?20 cm2 and Ω6 = 1.44 × 10?20 cm2. The calculated emission cross-sections of the 1.47 μm transition are 3.57 × 10?21 cm2, respectively. It is noted that the gain bandwidth, σe × FWHM, of the glass is about 440 × 10?28 cm3, which is significantly higher than that in ZBLAN and Gallate glasses, a high gain of 35.5 dB at 1470 nm can be obtained in a TKL glass fiber. TeO2-R2O (R = Li, Na, K)-La2O3 glasses has been considered to be more useful as a host for broadband optical fiber amplifier.  相似文献   

11.
The effect of Yb3+ concentration on the frequency upconversion (UPC) of Er3+ in PbO–GeO2–Ga2O3 glasses is reported for the first time. Samples were prepared with 0.5 wt% of Er2O3 and different concentrations of Yb2O3 (1.0–5.0 wt%). The green (523 and 545 nm) and red (657 nm) emissions are observed under 980 nm diode laser excitation. The dependence of the frequency UPC emission intensity upon the excitation power was examined and the UPC mechanisms are discussed. An interesting characteristic of these glasses is the increase of the ratio of red to green emission, through an increase of the Yb3+ concentration due to an efficient energy transfer from Yb3+ to Er3+.  相似文献   

12.
A new kind of germanate glass co-doped with Yb3+–Ho3+ was prepared. The J-O parameters were calculated to be Ω2 = (6.59 ± 0.21) × 10? 20 cm2, Ω4 = (2.77 ± 0.36) × 10? 20 cm2, and Ω6 = (1.90 ± 0.25) × 10? 20 cm2. The little overlap between the absorption cross section and stimulated emission cross section indicates a non-resonant energy transfer process. The calculation demonstrates that the energy transfer between Yb3+ and Ho3+ is one-phonon assisted in a great measure. The gain coefficient of Ho3+ at 2.0 μm was also calculated. The fluorescence measurement shows the Yb3+ co-doping enhances the 2.0 μm emission remarkably.  相似文献   

13.
《Journal of Non》1999,243(2-3):277-280
Thermal expansion coefficients (α) of glasses in the As2Se3–AsI3 system are measured in the glass transition region and temperature dependence of the fictive temperature is calculated on the basis of relaxation model. It is found that the increase of AsI3 content results in: an increase of α, decrease of the glass transition temperature (Tg), increase of the α change at Tg, an effect of quenching rate on α, and also changes in the structural relaxation times spectrum. The data are discussed within the framework of the assumption that the addition of AsI3 to As2Se3 results in: (1) destruction of the As2Se3 glass network, (2) structural inhomogeneity of the glasses increase, (3) the temperature dependence of chemical–structural equilibria occurring in the liquid state increases.  相似文献   

14.
The effect of lead oxide (PbO) on optical properties of Dy3+-doped PbO–H3BO3–TiO2–AlF3 (LBTAFDy) glasses is investigated. The LBTAFDy glasses were prepared with different PbO contents ranging from 30 to 60 mol%. The Judd–Ofelt intensity parameters (Ωλ = 2, 4, 6) are obtained by the least square fit analysis. It is found that the Ω2 parameter and yellow-to-blue intensity ratio (Y/B) of the Dy3+ emission depend on the PbO content in LBTAFDy glass. The structural asymmetry around the Dy3+ ion and the DyO covalency are responsible for the changes in Ω2 parameter and Y/B ratio. The variation of decay time of 4F9/2 emission level with the PbO content also supports the changes in structural asymmetry and DyO covalency in LBTAFDy glass.  相似文献   

15.
The effect of optical basicity on Er3+ up-conversion luminescence in germanate glasses is investigated under 980 nm excitation. The intensity of green and red up-conversion luminescence decreased with the increase in radius of alkali ion or Li2O content, implying that up-conversion luminescence strongly relates to the optical basicity of glass host. On the other hand, as increasing the optical basicity, the red emission intensity decreased significantly, while the green emission intensity decreased slightly. It has been proposed that the up-conversion luminescence intensity was dominated by the optical basicity, which theoretically estimated from glass composition. The interaction mechanism between up-conversion process and optical basicity was proposed.  相似文献   

16.
Raman scattering spectra of Ga2S3–2MCl (M = K, Rb, Cs) glasses have been conducted at room temperature. Based on the analysis of the local co-ordination surroundings of Cs+ ions, the similarities and differences of Raman spectra for the glass Ga2S3–2CsCl and the bridged molecular GaCl3 were explained successfully. Through considering the effect of M+ ions on mixed anion units [GaS4?xClx] and bridged units [Ga2S6?xClx] and the corresponding microstructural model, the Raman spectral evolution of the Ga2S3–2MCl (M = K, Rb, Cs) glasses was reasonably elucidated.  相似文献   

17.
In this paper, a detailed study to examine the influence of chalcogen S/Se mole % in the Ge28Sb12S60 ?xSex glass system, with x = 0, 15, 30, 45 and 60, is presented that provides insight into the effect of chalcogen content on the glass network and properties. Specifically, we report results of a systematic study to evaluate the relationship between compositional variation, glass properties and dominant bonding configurations. These materials are important to applications in optics manufacturing where correlation of physical and optical properties is required to predict fabrication behavior and ultimate material performance. It has been found that the dominant bonds in the glass system change upon reaching a specific molar ratio (percentage, %) of chalcogen substitution, between 30 < x < 45 mol%, changing from Ge―Se to Sb―Se bonds as the dominant bond type. This singularity has been observed using micro-Raman spectroscopy and X-ray photoelectron spectroscopy. This effect of the dominant bond configurational change was also shown to impart changes in important physical properties including micro-hardness, thermal properties, and the glass' viscometric behavior. Results indicate that the observed dominant bond change was responsible for a constant value in the evolution of both the micro-hardness and calorimetric glass transition temperature. The viscosity was also affected by the change in dominant bond type, breaking the monotony of the viscosity evolution during the S substitution, due to the total strength of the vitreous system which does not linearly increase.  相似文献   

18.
Nanoindentation studies on Ge15Te85 ? xInx glasses indicate that the hardness and elastic modulus of these glasses increase with indium concentration. While a pronounced plateau is seen in the elastic modulus in the composition range 3  x  7, the hardness exhibits a change in slope at compositions x = 3 and x = 7. Also, the density exhibits a broad maximum in this composition range. The observed changes in the mechanical properties and density are clearly associated with the thermally reversing window in Ge15Te85 ? xInx glasses in the composition range 3  x  7. In addition, a local minimum is seen in density and hardness around x = 9, the chemical threshold of the system. Further, micro-Raman studies reveal that as-quenched Ge15Te85 ? xInx samples exhibit two prominent peaks, at 123 cm? 1 and 155 cm? 1. In thermally annealed samples, the peaks at 120 cm? 1 and 140 cm? 1, which are due to crystalline Te, emerge as the strongest peaks. The Raman spectra of polished samples are similar to those of annealed samples, with strong peaks at 123 cm? 1 and 141 cm? 1. The spectra of lightly polished samples outside the thermally reversing window resemble those of thermally annealed samples; however, the spectra of glasses with compositions in the thermally reversing window resemble those of as-quenched samples. This observation confirms the earlier idea that compositions in the thermally reversing window are non-aging and are more stable.  相似文献   

19.
3CaO–Ga2O3–3GeO2 glass excited state absorption spectra-activated with Ho3+ (Ho2O3 – 0.7 wt% content) have been measured and analysed. Up-converted emission channels have been identified and the predicted up-converted emission bands have been registered under Ar ion laser (λ = 488 nm) excitation according to the excited state absorption data. A mechanism of up-converted transitions for Ho3+ centres in this prototype glass network is proposed on the basis of the obtained results.  相似文献   

20.
Z. Pan  G. Sekar  R. Akrobetu  R. Mu  S.H. Morgan 《Journal of Non》2012,358(15):1814-1817
Tb3 + and Yb3 + co-doped oxyfluoride glasses were fabricated in a lithium–lanthanum–aluminosilicate matrix (LLAS) by a melt-quench technique. Glass-ceramics were obtained by appropriate heat treatment of the as-prepared glasses. Visible to near-infrared down-conversion luminescence was studied for glass and glass-ceramic samples with different Yb3 + concentrations. It has been found that the luminescence intensity at 940–1020 nm from Yb3 + ions increases while the emission lifetime of Tb3 + ions decreases in the glass-ceramic compared to that in the as-prepared glass, which indicates that the energy transfer efficiency increases in the glass-ceramics compared to that in the as-prepared glass. The down-conversion luminescence also increased for increasing Yb3 + concentration from 1 mol% to 2 mol%, but decreased for the sample with a high Yb3 + co-doping concentration of 8 mol%, which is attributed to the concentration quenching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号