首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Journal of Non》2007,353(52-54):4723-4731
The effects of microalloying on glass formation and stability were systematically investigated by substituting 0.5 at.% of all 3d transition metals for Al in Al88Y7Fe5 alloys. X-ray diffraction and isothermal differential scanning calorimetry studies indicate that samples containing microadditions of Ti, V, Cr, Mn, Fe and Co were amorphous, while those alloyed with Ni and Cu were not. The onset temperatures for crystallization (devitrification) of the amorphous alloys were increased with microalloying and some showed a supercooled liquid region (ΔTx = Tx Tg) of up to 40 °C. In addition, microalloying changes the glass structure and the devitrification sequence, as determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis (DTA) and high energy X-ray diffraction. The results presented here suggest that the order induced in the alloy by the transition metal microaddition decreases the atomic mobility in the glass and raises the barrier for the nucleation of α-Al, the primary devitrifying phase in most cases. New intermetallic phases also appear with microalloying and vary for different transition metal additions.  相似文献   

2.
《Journal of Non》2006,352(30-31):3236-3243
Several ternary (NixNbySnz) refractory alloy glasses (RAGs) were studied at elevated temperatures in order to assess the stability of the amorphous state, i.e. devitrification, and to identify subsequent phase transformations in these materials. differential scanning calorimetry (DSC) experiments indicated a complex phase transformation sequence with several distinct crystallization and melting events being recorded above the glass transition temperature, Tg. Below Tg the RAG samples were studied with an in situ environmental X-ray furnace facility, which allowed step-wise isothermal ramping experiments commencing at a temperature below the reduced temperature of T/Tg  0.80. Distinct crystalline phases were observed when T/Tg  0.84 for ternary RAG alloys, while similar experiments on Zr-based Vit 106 glass alloys did not reveal any apparent phase separation until T/Tg  0.96. The phase separation kinetics followed an Arrhenius type of relationship with Ni3Sn, and Nb2O5 being the principle crystalline precipitates.  相似文献   

3.
Bulk glasses of a-Se75Te25 ? xGax (x = 0, 5, 10 and 15 at wt %) have been prepared by melt quenching technique. These samples were structurally characterized by using X-ray diffraction. Kinetic of crystallization in these glasses was studied under non-isothermal conditions using differential thermal analysis (DTA). DTA is performed at different heating rates of 5, 10, 15, 20 and 30 °C/min. The values of glass transition (Tg) and crystallization peak temperature (Tp) are found to be composition and heating-rate dependent. The obtained results have been analyzed in terms of activation energy of glass transition (Eg) using Kissinger's and Mahadevan et al. relations. Values of Eg obtained by the two relations are in agreement with each other. The results indicate that the crystallization process is a three-dimensional growth.  相似文献   

4.
The glass transition and crystallization kinetics of melt-spun Ni60Nb20Zr20 amorphous alloy ribbons have been studied under non-isothermal and isothermal conditions using differential scanning calorimetry (DSC). The dependence of glass transition and crystallization temperatures on heating rates was analyzed by Lasocka's relationship. The activation energies of crystallization, Ex, were determined to be 499.5 kJ/mol and 488.6 kJ/mol using the Kissinger and Ozawa equations, respectively. The Johnson–Mehl–Avrami equation has also been applied to the isothermal kinetics and the Avrami exponents are in the range of 1.92–2.47 indicating a diffusion-controlled three-dimensional growth mechanism. The activation energy obtained from the Arrhenius equation in the isothermal process was calculated to be Ex = 419.5 kJ/mol. The corresponding three dimensional (3D) time–temperature–transformation (TTT) diagram of crystallization for the alloy has been drawn which provides the information about transformation at a particular temperature. In addition, the intermetallic phases and morphology after thermal treatment have been identified by X-ray diffraction (XRD) and scanning electron microscope (SEM).  相似文献   

5.
A Li1.5[Al0.5Ge1.5(PO4)3] glass composition was subjected to several crystallization treatments to obtain glass–ceramics with controlled microstructures. The glass transition (Tg), crystallization onset (Tx) and melting (Tm) temperatures of the parent glass were characterized by differential scanning calorimetry (DSC). The glass has a reduced glass transition temperature Tgr = Tg/Tm = 0.57 indicating the possibility of internal nucleation. This assumption was corroborated by the similar DSC crystallization peaks from monolithic and powder samples. The temperature of the maximum nucleation rate was estimated by DSC. Different microstructures were produced by double heat treatments, in which crystal nucleation was processed at the estimated temperature of maximum nucleation rate for different lengths of time. Crystals were subsequently grown at an intermediate temperature between Tg and Tx. Single phase glass–ceramics with Nasicon structures and grain sizes ranging from 220 nm to 8 μm were then synthesized and the influence of the microstructure on the electrical conductivity was analysed. The results showed that the larger the average grain size, the higher the electrical conductivity. Controlled glass crystallization allowed for the synthesis of glass–ceramics with fine microstructures and higher electrical conductivity than those of ceramics with the same composition obtained by the classical sintering route and reported in literature.  相似文献   

6.
The scope of this work is to determine the crystalline phases of devitrified barium magnesium phosphate glasses and the glass composition which presents the best resistance to crystallization. Barium magnesium phosphate glasses with composition xMgO · (1 ? x)(60P2O5 · 40BaO) mol% (x = 0, 0.15, 0.3, 0.4, 0.5, and 0.6) were analyzed by differential thermal analysis (DTA) to evaluate the thermal stability against crystallization, and X-ray diffraction (XRD) to identify the crystalline phases formed after devitrification. The glass transition temperature (Tg) increases as the MgO content increases. The maximum temperature attributed to the crystallization peak in the DTA curve (Tc) increases when x increases in the range 0 ? x ? 0.3, and it decreases for x > 0.3. The most thermally stable glass composition against crystallization is for x = 0.3. After the devitrification, the number of coexisting crystalline phases increases as the MgO content increases. For x = 0.3 there is the coexistence of γBa(PO3)2 and Ba2MgP4O13 phases for devitrified glasses. The trend of the Tc is explained based on the assumptions of changes in the Mg2+ coordination number and the amphoterical features of MgO.  相似文献   

7.
The crystallization parameters such as glass transition temperature (Tg), onset crystallization temperature (Tc), peak crystallization temperature (Tp) and enthalpy released (ΔHC) of the bulk Se–Te chalcogenide glass has been studied by using Differential Scanning Calorimeter (DSC), under non-isothermal condition at a heating rate of 20 K/min. The values of Tg, Tc, Tp and ΔHC with and without laser irradiation for different exposure time have been studied. The optical absorption of pristine and laser irradiated thermally evaporated Se–Te films has been measured. The films shows indirect allowed interband transition that is influenced by the laser irradiation. The optical energy gap has been found to decrease from 1.61 to 1.38 eV with increasing irradiation time from 5 to 20 min. The results have been analyzed on the basis of laser irradiation-induced defects in the film.  相似文献   

8.
M. Shapaan 《Journal of Non》2009,355(16-17):926-931
This paper presents the results of kinematical studies of glass transition and crystallization in the unconventional glassy system (60?x)V2O5xAs2O3–20Fe2O3–10CaO–10Li2O (x = 0, 10, 20, 30, 40 mol%) using differential scanning calorimetry (DSC). The glass transition temperatures (Tg), the onset crystallization temperatures (Tc), and the peak temperatures of crystallization (Tp) were found to be dependent on the compositions and the heating rates. From the dependence on heating rates of (Tg) and (Tp) the activation energy for glass transition (Eg) and the activation energy for crystallization (Ec) are calculated. The thermal stability of (60?x)V2O5xAs2O3–20Fe2O3–10CaO–10Li2O was evaluated in term of, criteria ΔT = Tc ? Tg. All the results confirm that the thermal stability increase with increasing As2O3 contents. From the electric–dielectric measurements it was found that, σdc, σac(ω) and θD/2 decrease with increasing As2O3 contents. It is also observed that the dielectric constant (ε1(ω)) and the loss factor (tan δ) decrease with increasing As2O3 contents in this glass system.  相似文献   

9.
Z. Śniadecki  B. Idzikowski 《Journal of Non》2008,354(47-51):5159-5161
Thermal properties of rapidly quenched alloys from the DyMn6?xGe6?xFexAlx (1 ? x ? 2.5) series produced by melt-spinning have been investigated by differential scanning calorimetry (DSC). The DSC curves show two exothermic effects connected with crystallization processes. Crystallization temperatures and enthalpies ΔH have been estimated. The systematic changes in these parameters allow concluding that the crystallization exothermic events are independent. Effective activation energies E have been determined using the Kissinger analysis and relatively high values up to 480 ± 20 kJ/mol for DyMn4Ge4Fe2Al2 have been found indicating high thermal stability of the amorphous state in this alloy series.  相似文献   

10.
Two novel compounds based on biphenyl structure, 2,2′-di(3,5-di(tert-butylcarbonate)phenyl)-4,4′-di(tert-butylcarbonate)biphenyl (A) and 2,2′,4,4′-tetra(3,5-di(tert-butylcarbonate)phenyl)biphenyl (B) were synthesized by commercially available materials. The products were fully characterized by FTIR, NMR and elemental analysis. The thermal stability and the phase transition of these compounds had been studied by TGA and DSC techniques. For compound A, thermal decomposition temperature was of 176 °C and glass transition temperature (Tg) was of 105 °C. While for compound B, the thermal decomposition occurred at 186 °C and Tg was of 122 °C. The synthesized compounds were found to be amorphous materials by XRD analysis and good film-forming ability by AFM analysis. These results indicated that the synthetic molecular glasses would be suitable for low molecular weight photo resists in EUV lithography.  相似文献   

11.
Co-based ferromagnetic bulk glassy alloy (BGA) system is promising for future applications as new structural and functional materials. In the present paper as-cast Co47Fe20.9B21.2Si4.6Nb6.3 bilayer, ribbon, rods with diameter up to 5 mm and [Co47Fe20.9B21.2Si4.6Nb6.3]98Ga2 as-cast ribbon as well as rod with 4 mm diameter were investigated. Co based master ingots with the composition Co47Fe20.9B21.2Si4.6Nb6.3 have been prepared in a vacuum furnace. The as-prepared master ingots were then purified by fluxing. Small amount of gallium (2 at.%) was added into one part of the purified master alloy. Ribbons, bilayer and bulk samples in form of rods were prepared by subsequent planar flow casting and suction casting method, respectively. Glassy structure of as-cast samples was examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thermal stability associated with glass transition temperature (Tg), crystallization temperature (Tx) and supercooled liquid region (?Tx = Tx  Tg) were examined by differential scanning calorimetry (DSC). The Curie temperature of the investigated ribbons and rods was determined by magnetic thermogravimetry analysis (TGA). Using special disc-shaped samples field dependencies of magnetostriction in parallel and perpendicular directions of the applied magnetic field were obtained by direct measurement.  相似文献   

12.
Glasses with a high content of niobium oxide are of significant interest for electro-optics and nonlinear optics. In the present paper we report the results of the investigation of the submicroscopic structure and nonlinear optical properties of (1-x)KNbO3xSiO2 (KNS) glasses (x = 0.05–0.30) by XRD, SANS, electron microscopy and second harmonic generation (SHG) technique. Vitreous samples were fabricated by rapid melt cooling, via pressing the melt by steel plates, quenching between rotating metal rolls or splat cooling in air or nitrogen flow. Glasses with x < 0.15 are shown to possess a micro-inhomogeneous structure with regions enriched by SiO2. On the contrary, as-quenched glasses with x > 0.15 are found by SANS to be homogeneous, but form nanostructures enriched by SiO2 after heat-treatment. At temperatures below ~(Tg + 50 °C), SiO2-enriched regions grow slightly, whereas their chemical composition shifts considerably closer to SiO2. The data on the nano-inhomogeneous structure enables clarifying the complicated Tg(x) dependence of KNS glasses. SHG-active KNbO3 phase precipitates at later stages of crystallization when the glass starts to lose its transparency, and crystallization of perovskite-like KNbO3 is accompanied by the enhancement of SHG efficiency by several orders of magnitude.  相似文献   

13.
We report the results of a systematic study of the thermal and optical properties of a new family of tellurite glasses, TeO2–ZnO–BaO (TZBa), as a function of the barium oxide mole fraction and compare them with those of TeO2–ZnO–Na2O (TZN). The characteristic temperatures of this new glass family (glass transition, Tg, crystallization, Tx, and melting, Tm) increase significantly with BaO content and the glasses are more thermally stable (greater ΔT = Tx ? Tg) than TZN glasses. Relative to these, Raman gain coefficient of the TZBa glasses also increases by approximately 40% as well as the Raman shift from ~ 680 cm? 1 to ~ 770 cm? 1. The latter shift is due to the modification of the glass with the creation of non-bridging oxygen ions in the glass network. Raman spectroscopy allows us to monitor the changes in the glass network resulting from the introduction of BaO.  相似文献   

14.
《Journal of Non》2007,353(24-25):2328-2332
Chalcogenide glasses based on the cadmium–selenium system, with the selenium composition varying from 0 to 7.5 wt% have been prepared using melt-quenching method i.e., single-roller quenching technique. The X-ray diffraction (XRD) and selected area electron diffraction (SAD) patterns of the CdSe ribbons indicate that the ribbons are amorphous. The transmission electron microscopy (TEM) studies carried out on these ribbons reveal that the constituents are inhomogeneously distributed in these ribbons. The temperature dependence of the electrical resistivity, ρ and thermoelectric power (TEP) of these ribbons has been studied in the temperature range 30–350 °C. The sudden jump in the values of electrical resistivity at a specific temperature for each case in these ribbons has been correlated with the phase transition i.e., the onset of crystallization in these materials during heating. The crystallization temperature, Tc has been found to be a function of Se content of these ribbons. The phase change in these ribbons as a result of heating does not seem to affect the variation of TEP with temperature. However, the slope of TEP versus temperature curves depends on Se content in these ribbons. The differential scanning calorimetry (DSC) of these ribbons indicates that the supercooled region in these ribbons extends from 50 to 70 °C. The composition CdSe ribbon with 0.5 wt% Se has the highest value of Tc and glass forming ability, Kg = 0.7.  相似文献   

15.
《Journal of Non》2005,351(40-42):3320-3324
The complex primary crystallization kinetics of the amorphous Finemet soft magnetic alloys has been analyzed by non-isothermal DSC measurements. The local activation energies Ec(α) were determined by an isoconversional method without assuming the kinetic model function and its average value was about 383 kJ/mol. The nucleation activation energy En and growth activation energy Eg were 425 and 333 kJ/mol, respectively. And the apparent local activation energies Ec can be expressed by En and Eg as follows: Ec = aEn + bEg. The local Avrami exponents lies between 1 and 2 in a wide range of 0.2 < α < 0.9, and it indicates that dominating crystallization mechanism in the non-isothermal primary crystallization of amorphous Finemet alloy is one dimensional growth at a near-zero nucleation rate for surface crystallization. The significant variation of local Avrami exponent and local activation energy for primary crystallization with crystallized volume fraction demonstrates that the primary crystallization kinetics of amorphous Finemet alloy varies at different stages. In addition, the variable local activation energies Ec(α) and local Avrami exponents n(α) are applicable and correct in describing the primary crystallization process of the amorphous Finemet alloy according to the theoretical DSC curve simulation.  相似文献   

16.
《Journal of Non》2006,352(30-31):3290-3294
Bulk metallic glasses (BMGs), especially Zr-based BMGs, have attracted lot of attention of materials scientists because of their very attractive physical, thermal and mechanical properties and a few unique applications. In the present study, Zr65Cu18Ni9Al8 alloy was designed according to the criterion of conduction electron/atom (e/a ratio) ∼1.395 and average atomic size of alloy (Ra) ∼0.1498 nm. Addition of 2 at.% Er was carried out in the base alloy to investigate its effect on thermal and mechanical properties. Characterization of alloys was performed using the techniques of XRD, DSC, and SEM/EDS. Mechanical properties like Vicker’s microhardness, nanohardness, elastic modulus, density and fracture strength were measured. Average shear angle was found to be ∼35 ± 1° for base alloy and about 31 ± 1° for alloy containing 2 at.% Er. Wide supercooled liquid regions of 129 K and 119 K were found for the base alloy and the alloy containing 2 at.% Er.  相似文献   

17.
In searching for new kind of photoelectric material, chalcogenide glasses in the GeS2–Sb2S3–CdS system have been studied and their glass-forming region was determined. The system has a relatively large glass-forming region that is mainly situated along the GeS2–Sb2S3 binary side. Thermal, optical and mechanical properties of the glasses were reported and the effects of compositional change on their properties are discussed. These novel chalcogenide glasses have relatively high glass transition temperatures (Tg ranges from 566 to 583 K), good thermal stabilities (the maximum of deference between the onset crystallization temperature, Tc, and Tg is 105 K), broad transmission region (0.57–12 μm) and large densities (d ranges from 2.99 to 3.34 g cm?3). These glasses would be expected to be used in the field of rare earth doped fiber amplifiers and nonlinear optical devices.  相似文献   

18.
《Journal of Non》2007,353(13-15):1247-1250
Electrical switching and differential scanning calorimetric studies are undertaken on bulk As20Te80−xGax glasses, to elucidate the network topological thresholds. It is found that these glasses exhibit a single glass transition (Tg) and two crystallization reactions (Tc1 & Tc2) upon heating. It is also found that there is only a marginal change in Tg with the addition of up to about 10% of Ga; around this composition an increase is seen in Tg which culminates in a local maximum around x = 15. The decrease exhibited in Tg beyond this composition, leads to a local minimum at x = 17.5. Further, the As20Te80−xGax glasses are found to exhibit memory type electrical switching. The switching voltages (VT) increase with the increase in gallium content and a local maximum is seen in VT around x = 15. VT is found to decrease with x thereafter, exhibiting a local minimum around x = 17.5. The composition dependence of Tc1 is found to be very similar to that of VT of As20Te80−xGax glasses. Based on the present results, it is proposed that the composition x = 15 and x = 17.5 correspond to the rigidity percolation and chemical thresholds, respectively, of As20Te80−xGax glasses.  相似文献   

19.
M.R. Sahar  K. Sulhadi  M.S. Rohani 《Journal of Non》2008,354(12-13):1179-1181
Er3+-doped tellurite glasses of the (80 ? x)TeO2–20ZnO–(x)Er2O3 system (0.5 mol% ? x ? 2.5 mol%) have successfully been made by melt-quenching technique and their structure has been investigated by means of DTA and Raman spectroscopy. The DTA results show the thermal parameters; such as the glass transition temperature (Tg) and crystallization temperature (Tc) were determined. It is found that this system provides a stable and wide glass formation range in which the glass stability around 99–140 °C may be obtained. The Raman spectroscopy used the structural studies in the glass system. Two Raman shift peaks were observed around 640–670 cm?1 and 720–740 cm?1, which correspond to the stretching vibration mode of TeO4 tbp and TeO3 tp, respectively. It is found that the spectral shift in Raman spectra is depending on the Er2O3 content. This evolution is an indication of the changes in the basic unit of the glass structure.  相似文献   

20.
Alternating differential scanning calorimetric (ADSC) studies have been performed to understand the thermal behavior of bulk GexSe35?xTe65 glasses (17 ? x ? 25); it is found that the glasses with x ? 20 exhibit two crystallization exotherms (Tc1 & Tc2). On the other hand, those with x ? 20.5, show a single crystallization reaction upon heating. The exothermic reaction at Tc1 has been found to correspond to the partial crystallization of the glass into hexagonal Te and the reaction at Tc2 is associated with the additional crystallization of rhombohedral GeTe phase. The glass transition temperature of GexSe35?xTe65 glasses is found to show a linear but not-steep increase, indicating a progressive, but a gradual increase in network connectivity with Ge addition. It is also found that Tc1 of GexSe35?xTe65 glasses with x ? 20, increases progressively with Ge content and eventually merges with Tc2 at x  20.5 (〈r = 2.41); this behavior has been understood on the basis of the reduction in TeTe bonds of lower energy and increase in GeTe bonds of higher energy, with increasing Ge content. Apart from the interesting composition dependent crystallization, an anomalous melting behavior is also exhibited by the GexSe35?xTe65 glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号