首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray photoelectron spectroscopy (XPS) has been used to examine the atomic content of implanted SiO2/Si layers. In particular, an XPS analysis permits to identify elemental Ge and Si, as well as GeO2 precipitations in SiO2 matrices. The XPS results reveal valuable information not only about the formation mechanism of Ge and Si nanoclusters but also on the annealing kinetics of SiO2 whose properties are known to be significantly altered during the process of ion implantation and subsequent annealing. The composition of ion beam-modified SiO2 layers strongly depends on the annealing temperature. With respect to germanium implanted samples a possibility of Ge nanocrystals formation appears at high (above 1000 °C) annealing temperatures. It has been shown that an intermediate step in the Ge oxide formation is necessary for the creation of Ge nanoclusters. Additionally, the presence of a subsurface zone GeOx (about 100 nm thick) predicted in kinetic three-dimensional lattice simulations has been confirmed. In the case of Si+ implanted samples substoichiometric silicon oxide lines in the XPS spectra of a SiO2 layer for all samples have been observed. No evidence of a line connected to the Si–Si bonding has been observed even at the highest annealing temperatures, at which only stoichiometric SiO2 has been detected.  相似文献   

2.
Using the DMF trimethylsilylation technique developed by Tamás, Sarkar and Roy, the distribution of silicate anions in lead silicate glasses of the composition range PbO·SiO24PbO· SiO2 has been reinvestigated. The obtained results agree with earlier findings except for the tetrameric chain anion [SiO4O13]10?, which had not been found before. Crystallization of glassy PbO·SiO2 proceeds via the formation of low-molecular silicate anions [Si2O7]6?, [Si4O13](II)10? and [Si7O22]16?, which characterize the low-temperature crystalline polymorph TPbO·SiO2. Further heat treatment turns TPbO·SiO2 into alamosite, characterized by polysilicate chain anions [SiO32?].  相似文献   

3.
SiO2 samples were implanted with 45 keV Zn ions at doses ranging from 5×1015 to 1.0×1017 ions/cm2, and were then subjected to furnace annealing at different temperatures. Several techniques, such as ultra-violet–visible spectroscopy (UV–vis), grazing incidence X-ray diffraction spectroscopy (GXRD) and atomic force microscopy (AFM), have been used to investigate formation of nanoparticles and their thermal evolution. Our results clearly show that Zn nanoparticles could be effectively formed in SiO2 at doses higher than 5×1016 ions/cm2. The subsequent thermal annealing at oxygen ambient could induce the growth of Zn nanoparticles at intermediate annealing temperature range. While at temperature above 600 °C, Zn nanoparticles could be transformed into ZnO, or even Zn2SiO4 nanoparticles. The results have been tentatively discussed in combination with Zn diffusion and migration obtained by Rutherford backscattering spectroscopy (RBS) measurements.  相似文献   

4.
High speed magic-angle rotation of glass samples in the strong polarizing field of a superconducting magnet yields high-resolution 29Si NMR spectra. Using this technique glasses of various composition, PbO·SiO2, (PbO)2·SiO2, and (PbO)4·SiO2 were studied and the influence of thermal treatment followed. Crystallization of PbO·SiO2 glass has been found to be a complex process leading to a structure identical with that of the mineral alamosite. The 29Si NMR spectrum of crystalline alamosite consists of three lines in agreement with the structure determined by X-ray diffraction.  相似文献   

5.
《Journal of Non》2005,351(40-42):3225-3234
Sol–gel derived SiO2 have been shown to be biocompatible and bioresorbable and they have potential use in living tissue, e.g., in bone regeneration and controlled drug delivery. Bioresorbable SiO2 is a potential alternative for the controlled delivery of large biologically active agents, such as proteins and peptides. The aim was to prepare SiO2 matrices with varying bioresorption rate at protein-compatible conditions and to characterize the chemical features of the matrices. SiO2 was prepared in two morphologies, monoliths by casting and microparticles by spray drying. A model protein was encapsulated into the SiO2 matrices. Materials were carefully characterized with FTIR- and Raman spectroscopy, TGA-FTIR, solid state 29Si MAS NMR, SEM and matrix dissolution was measured in simulated physiological conditions. It is shown that both fast and slowly dissolving SiO2 matrices could be prepared at protein-compatible conditions. Fast-dissolving SiO2 microparticles contained a high proportion of Q3 and a low portion of Q4 indicating poor cross-linking of SiO2 species and an increased amount of hydrolysable terminal groups. Spectroscopic techniques and TGA-FTIR show that organic residues and moisture are left in the matrices. The amount of organic residues is larger in the fast-dissolving SiO2 matrices, but it does not significantly affect the bioresorption rate.  相似文献   

6.
Glasses in the Na2OSiO2Sc2O3 system have been studied by Raman and difference Raman spectroscopy. Addition of Sc2O3 to sodium silicate glasses results in new vibrational bands at 1025 cm?1 and 360 cm?1. The high frequency band is interpreted to be due to Sc+3 quasi-complexes formed by Sc+3 ions coordinated by SiO4?4 tetrahedra having non-bridging oxygens. The discrete character of the scandium-produced bands implies incipient separation of Sc+3-enriched silicate structures from purely silicate structures.  相似文献   

7.
Four glasses of the SiO2-GeO2 binary system have been synthesized via a sol-gel route followed by a heat treatment and a quench. Glass structure has been determined by Ge K-edge X-ray absorption spectroscopy (XAS) at low temperature and Raman spectroscopy. These mixed glasses present a continuous random network of interconnected GeO4 and SiO4 tetrahedra, with GeO4 tetrahedra similar to the GeO4 units in GeO2 glass and continuous compositional variations from GeO2-rich regions to SiO2-rich regions. Such a random mixture is consistent with physical properties of these binary glasses as well as with the chemical dependence of their polyamorphism at high pressure. This EXAFS-derived mean Ge-O-Si angles are close to the Ge-O-Ge mean angle in GeO2 glass, 134° and 130°, respectively. This misfit with the Si-O-Si angles might explain the ease of formation of isolated and pair defects centers, which are suspected to be at the origin of photo-induced modifications of optical properties in Ge-bearing SiO2 glasses.  相似文献   

8.
《Journal of Non》1986,81(3):351-364
The compositions (in mol%) 40 MnFe2O4, 60 SiO2, and 42.8 CoFe2O4, 57.1 SiO2 have been melted and splat-quenched. The resulting materials have been analyzed using X-ray diffraction, transmission electron microscopy, scanning transmission electron microscopy, and room temperature Mössbauer spectroscopy.The quenched Mn-containing material was completely amorphous. Its Mössbauer spectrum contains two doublets, indicating Fe2+ and Fe3+ in distorted octahedral sites.The quenched Co-containing composition contained (Co, Fe)2SiO4 (olivine and (Co, Fe)2O4 (spinel) precipitates, 150–400 Å in diameter, in a glassy matrix. The Mössbauer spectrum contains three doublets, indicating octahedral Fe2+ in the olivine, distorted octahedral Fe2+ in the glass, and distorted octahedral Fe3+ in the glass. The spectrum also shows trace hyperfine splitting, attributed to the spinel ferrite.  相似文献   

9.
We report on the effect of BaO on the crystallization kinetics of glasses in the diopside (CaMgSi2O6)-Ca-Tschermak (CaAl2SiO6) system. Partial substitution (i.e. 5%, 10% and 20%) of Ba2+ for Ca2+ was attempted in composition CaMg0.8Al0.4Si1.8O6, in three different glasses while partial substitution of B3+ for Al3+ was made in the fourth glass. Structural investigations on the glasses have been made by density measurements, molar volume and Infra-red spectroscopy (FTIR). Non-isothermal crystallization kinetic studies have been employed to study the mechanism of crystallization in all the four glasses. The Avrami parameter for the glass powders is ∼2, indicating the existence of intermediate mechanism of crystallization. Crystallization sequence in the glasses has been followed by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and FTIR. Augite crystallized out being the dominant phase in all the glass-ceramics, while different polymorphs of BaAl2Si2O8 were present as secondary or minor phases.  相似文献   

10.
Koichi Awazu 《Journal of Non》2004,337(3):241-253
The structure of amorphous SiO2 exposed to ArF excimer laser irradiation was examined. Threshold fluence for causing ablation with a single pulse depended on sample preparation: more specifically, 1 J/cm2 for thermally grown SiO2 films on silicon and 2.5 J/cm2 for bulk SiO2. It was found that the bond angle of Si-O-Si was reduced by irradiation near the interface of thermally grown SiO2 films. In contrast, evolution of the bond angle by irradiation was absent in both the bulk SiO2 and SiO2 film-near the top surface, even though the concentration of puckered four-membered rings deduced from Raman spectra dramatically increased. It is assumed that planar three-membered rings were generated in the SiO2 thin layer near the interface, and puckered four-membered rings were generated in the bulk SiO2. The concentration of both the Si3+ and Si2+ structure was increased at a fluence of 800 mJ/cm2 with an increasing number of pulses, although generation of both was absent at higher fluence for a single pulse. The author proposes that the structure of SiO2 is created by flash heating and quenching by pulse laser irradiation. Structural similarities were found between the irradiated SiO2 and SiO2 at high temperatures.  相似文献   

11.
Without an additional silicon source, amorphous SiO2 nano-wires were grown on the pre-oxidized silicon substrate with the assistance of Ni-based catalyst under ambient pressure. The as-grown amorphous SiO2 nano-wires were characterized by X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy (HRTEM) and selected area diffraction. The micro-region chemical composition investigation on the as-grown amorphous SiO2 nano-wires was carried out using X-ray energy dispersion spectroscopy (EDS) on the HRTEM. The present work focuses on the formation of atomic H on the surface of pure zinc powder by introducing moisture (N2 + H2O) into the furnace at high temperature. The growth mechanism has been discussed and attributed to the vapor–liquid–solid (VLS) mechanism instead of the adopted solid–liquid–solid (SLS) mechanism owing to the observed evidence of an etching reaction of atomic H at the SiO2 buffer layer and/or that of H at the Si substrate to form a gaseous hydro-silicon radical (SiHx) that is then transported to the growth sites. The intrinsic luminescent behavior of the amorphous SiO2 nano-wires in the range of 350–430 nm was also reported and discussed. These results provide an alternative and simple procedure for nanostructures growth, which will be helpful to understand the growth mechanism of one dimensional SiO2 nanostructures.  相似文献   

12.
Vibrational spectroscopy, 29Si and 31P magic-angle spinning nuclear magnetic resonance spectroscopy and high resolution transmission electron microscopy were used to investigate structural aspects of SiO2-P2O5-CaO-Na2O-MgO glasses. The experimental results show that for the two compositions, 25.3SiO2-10.9P2O5-32.6CaO-31.2MgO and 33.6SiO2-6.40P2O5-19.0CaO-41.0MgO, phosphorous is present in a nano-crystalline form with interplanar distances in the 0.21-0.26 nm range. The two glasses develop a surface CaP-rich layer and the presence of any intermediate silica-rich layer was not detected. It was suggested that the phosphate nano-regions may play a key role in the initial stages of the bioactive process, acting as nucleation sites for the calcium phosphate-rich layer.  相似文献   

13.
Bioglasses have been developed for use in surgery because of their ability to form a hydroxy-carbonate apatite (HCA) layer on their surface which facilitates bonding to natural bone. However, they do not have sufficient strength for use in load-bearing situations and therefore improving their mechanical properties would allow their use in more robust applications. The purpose of this work was to study the effects of nitrogen addition on the physical and mechanical properties and the structure of oxynitride bioglasses based on the system Na2O–CaO–SiO2–Si3N4. The density, glass transition temperature, hardness and elastic modulus were measured and observed to increase linearly with nitrogen content. These increases are consistent with the incorporation of N into the glass structure in three-fold coordination with silicon which results in extra cross-linking of the glass network. The characterization of these oxynitride bioglasses using solid state nuclear magnetic resonance 29Si MAS NMR and infrared spectroscopy have shown firstly that all the N atoms are bonded to Si atoms and secondly that this increase in rigidity of the glass network can be explained by the formation of SiO3N, SiO2N2 tetrahedra and Q4 units with extra bridging anions at the expense of Q3 units. The oxynitride bioglasses in simulated body fluid form a hydroxy-carbonate apatite (HCA) layer on their surfaces showing that bioactivity is retained.  相似文献   

14.
The leached layer of PbOSiO2 glasses formed by diluted nitric acid solution has been investigated by ellipsometry and Auger electron spectroscopy (AES). The leaching behavior of PbOSiO2 glasses in 10?4 N aqueous solution of NHO3 at 30°C was measured in real time using a Nikon auto-ellipsometer.The results were applied by curve fitting to the two-layer model from the concentration profile obtained by AES, and the refractive index profile against the film thickness was determined.The leached layer is inhomogeneous and consists of a low refractive index region and a transition region. The gradient of the refractive index in the former region is extremely small and the refractive index becomes nearly constant between 1.42 and 1.44. The shape of latter region becomes stable with its thickness at 100–310 Å, and moves in the direction of depth without changing the shape as the leaching proceeds.  相似文献   

15.
Raman spectroscopy is used here as an innovative technique to investigate sulfate content in borosilicate glasses. Using Raman spectroscopy after having heated the material, the evolution of sulfate amounts can be followed as a function of temperature, time and chemical composition of the starting matrix. The accuracy of this technique was verified using electron probe micro analysis (EPMA), on two systems of glasses (SiO2–B2O3–Na2O (SBNa) and SiO2–B2O3–BaO (SBBa)) in order to compare the effect of alkaline or alkaline-earth elements on sulfur speciation and incorporation. To quantitate sulfate content with Raman spectroscopy, the integrated intensity of the sulfate band at 990 cm?1 was scaled to the sum of the integrated bands between 850 and 1250 cm?1, bands that are assigned to Qn silica units. Calibration curves were then determined for different samples. The determination of sulfate contents with Raman spectroscopy analysis is possible with an accuracy of approximately 0.1 wt% depending on the composition of the glass. It mainly allows us to follow sulfate removal during the elaboration process and to establish kinetic curves of sulfate release as a function of the viscosity of the borosilicate glass.  相似文献   

16.
J. Wong 《Journal of Non》1976,20(1):83-100
Room temperature infrared transmission spectra in the range 4000-250 cm?1 of binary phosphosilicate glass (PSG) films deposited by reacting argon- or nitrogen-diluted PH3SiH4O2 mixtures on heated silicon substrates at 300–400° C have been obtained across the whole composition range. In all the as-deposited binary films, an absorption at ≈1300 cm?1 characteristics of the P=O vibration was found to persist, together with a couple of broad absorptions in the regions 1200-900 cm?1 and 500 cm?1. Using a differential infrared technique the broad feature in the higher frequency region has been resolved into two well-defined bands at ≈1100 and 970 cm?1. A detailed analysis shows that the intensity variation of the differential band at ≈1100 cm?1 conforms well, at least to 50 mol% P2O5, to a simple structural model that yields an analytic distribution of POSi linkages as a function of composition by assuming chemical mixing in the vapor-deposited P2O5SiO2 system. Furthermore, the system may be written as (P=O)2 O3SiO2 in order to emphasize the similarity of its coordination scheme with that of the B2O3SiO2 system studied earlier. The nature of these CVD films has also been elucidated by thermal and water treatments.  相似文献   

17.
SiO2–B2O3 aerogels have been prepared by drying wet gels at a supercritical condition for ethanol in an autoclave. Aerogels have been nitrided for 6 h in flowing ammonia at the temperature of 1200 °C. It has been found that the amount of nitrogen incorporated in these aerogels always exceeds 20 wt%. This is a much higher value compared with the amount of nitrogen incorporated in a pure silica aerogel nitrided at the same conditions. The specific surface area of SiO2–B2O3 aerogels has been between 312 and 359 m2/g. After nitridation some shrinkage of aerogels has been observed and the surface area decreases about 20%. In FTIR spectra of SiO2–B2O3 aerogels a typical bands for SiO2 are observed. After nitridation a shift and broadening of 1100 cm?1 band to lower wavenumbers indicates that Si–N and B–N bonds are formed in nitrided aerogels.  相似文献   

18.
《Journal of Non》2006,352(26-27):2731-2736
Ionic diffusion was investigated in the SiO2–B2O3–Na2O glass system over a wide composition range by impedance spectroscopy measurements. The Na+ cation transport mechanism was described by an interstitial pair migration model based on Frenkel defects in ionic crystals. The activation energy of the static electrical conductivity is shown to be correlated with the boron coordination number in these glasses. Published 11B NMR results were used to calculate the activation energies of sodium cations acting as charge compensators for the [BO4/2] tetrahedron and of sodium cations bonded to non-bridging oxygen atoms. These values are in agreement with the activation energies of the Na2O–B2O3 and Na2O–SiO2 binary systems, respectively.  相似文献   

19.
Gi-Hyun Kim  Il Sohn 《Journal of Non》2012,358(12-13):1530-1537
The effect of Al2O3 on viscosity in the calcium silicate melt-based system containing Na2O and CaF2 was investigated and correlated with the melt structure using FTIR (Fourier transform infrared) spectroscopy, XPS (X-ray photoelectron spectroscopy), and Raman spectroscopy. Substituting SiO2 with Al2O3 modified the dominant silicate network into a highly structured alumino-silicate structure with the aluminate structure being particularly prevalent at 20 mass% of Al2O3 and higher. As the melts become increasingly polymerized with higher Al2O3 content, the fraction of symmetric Al–O0 stretching vibrations significantly increased and the viscosity increased. XPS showed a decrease in the amount of non-bridged oxygen (O?) but an increase in bridged oxygen (O0) and free oxygen (O2?) with higher Al2O3. Although changes in the structure and viscosity with higher CaO/(SiO2 + Al2O3) were not significant, the symmetric Al–O0 stretching in the [AlO4]5?-tetrahedral units decreased. The apparent activation energy for viscous flow varied from 118 to 190 kJ/mol.  相似文献   

20.
The decrease of the alkali signal during Auger electron spectroscopy (AES) has been studied on glasses with molar composition 20 M2O · 80 SiO2 and 20 M2O · 10 CaO · 70 SiO2, where M = Na and/or K. The samples were fractured in situ, and beam conditions in the region 1.5–3 keV and 1–40 μA were chosen. The K signal in 20 K2O · 80 SiO2 remained sufficiently constant to allow a reliable measurement. Its decrease showed an initial delay which can be explained by assuming a rapid decrease of the K concentration at some depth below the surface. The presence of CaO accelerates the migration of alkali during AES. This is not predicted by diffusion data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号