首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method of regularized Stokeslets is a numerical approach to approximating solutions of fluid–structure interaction problems in the Stokes regime. Regularized Stokeslets are fundamental solutions to the Stokes equations with a regularized point-force term that are used to represent forces generated by a rigid or elastic object interacting with the fluid. Due to the linearity of the Stokes equations, the velocity at any point in the fluid can be computed by summing the contributions of regularized Stokeslets, and the time evolution of positions can be computed using standard methods for ordinary differential equations. Rigid or elastic objects in the flow are usually treated as immersed boundaries represented by a collection of regularized Stokeslets coupled together by virtual springs which determine the forces exerted by the boundary in the fluid. For problems with boundaries modeled by springs with large spring constants, the resulting ordinary differential equations become stiff, and hence the time step for explicit time integration methods is severely constrained. Unfortunately, the use of standard implicit time integration methods for the method of regularized Stokeslets requires the solution of dense nonlinear systems of equations for many relevant problems. Here, an alternate strategy using an explicit multirate time integration scheme based on spectral deferred corrections is incorporated that in many cases can significantly decrease the computational cost of the method. The multirate methods are higher-order methods that treat different portions of the ODE explicitly with different time steps depending on the stiffness of each component. Numerical examples on two nontrivial three-dimensional problems demonstrate the increased efficiency of the multi-explicit approach with no significant increase in numerical error.  相似文献   

2.
The motion and flow generated by immersed structures in a fluid in the Stokes regime can be modeled with a variety of different numerical methods. The mathematical structure of the Stokes equations allows one to describe the flow around a three-dimensional object using only information regarding its geometry. This leads to computational techniques such as boundary integral methods or the method of regularized Stokeslets that discretize the surface of the immersed object in the flow. However, when the body in question is slender, a more computationally efficient alternative is to represent the flow by a one-dimensional discretization along the centerline of the object rather than a discretization of the boundary. Using an exact and an asymptotic solution describing the nontrivial three-dimensional fluid flow generated by a slender precessing spheroid, we present a careful analysis of the approximation of the flow using the method of regularized Stokeslets, where the regularized Stokeslets are placed along the centerline of the spheroid. Guidance is presented on how best to choose the numerical parameters within the method of regularized Stokeslets to minimize the error for a given application.  相似文献   

3.
We present a second-order accurate method for computing the coupled motion of a viscous fluid and an elastic material interface with zero thickness. The fluid flow is described by the Navier–Stokes equations, with a singular force due to the stretching of the moving interface. We decompose the velocity into a “Stokes” part and a “regular” part. The first part is determined by the Stokes equations and the singular interfacial force. The Stokes solution is obtained using the immersed interface method, which gives second-order accurate values by incorporating known jumps for the solution and its derivatives into a finite difference method. The regular part of the velocity is given by the Navier–Stokes equations with a body force resulting from the Stokes part. The regular velocity is obtained using a time-stepping method that combines the semi-Lagrangian method with the backward difference formula. Because the body force is continuous, jump conditions are not necessary. For problems with stiff boundary forces, the decomposition approach can be combined with fractional time-stepping, using a smaller time step to advance the interface quickly by Stokes flow, with the velocity computed using boundary integrals. The small time steps maintain numerical stability, while the overall solution is updated on a larger time step to reduce computational cost.  相似文献   

4.
在蒸汽爆炸的粗混合过程中,由于液体的快速蒸发,高温金属液滴的周围会产生一层很薄的蒸汽膜,此时液滴周围的边界层流动与没有液体蒸发时有很大的不同,因此,常温情况下的小球在连续液体中运动时的通用阻力模型在这种情况下是不适用的.本文通过受力分析,考虑了高温小球受力的分布和表面蒸发对小球周围力的影响,从阻力的基本机理上分析了蒸发状态下小球的运动阻力,分别提出了高温颗粒穿过自由表面时与其在液体中运动时的蒸发阻力模型.分析表明,当小球温度高于2500 K,特别是在靠近自由表面的区域,由于小球表面液体蒸发而产生的蒸发阻力作用非常明显.分析指出,小球的入水初速、小球表面的液体蒸发速率以及汽膜厚度都是影响小球运动阻力大小的重要因素.  相似文献   

5.
The effects of complex boundary conditions on flows are represented by a volume force in the immersed boundary methods. The problem with this representation is that the volume force exhibits non-physical oscillations in moving boundary simulations. A smoothing technique for discrete delta functions has been developed in this paper to suppress the non-physical oscillations in the volume forces. We have found that the non-physical oscillations are mainly due to the fact that the derivatives of the regular discrete delta functions do not satisfy certain moment conditions. It has been shown that the smoothed discrete delta functions constructed in this paper have one-order higher derivative than the regular ones. Moreover, not only the smoothed discrete delta functions satisfy the first two discrete moment conditions, but also their derivatives satisfy one-order higher moment condition than the regular ones. The smoothed discrete delta functions are tested by three test cases: a one-dimensional heat equation with a moving singular force, a two-dimensional flow past an oscillating cylinder, and the vortex-induced vibration of a cylinder. The numerical examples in these cases demonstrate that the smoothed discrete delta functions can effectively suppress the non-physical oscillations in the volume forces and improve the accuracy of the immersed boundary method with direct forcing in moving boundary simulations.  相似文献   

6.
陈耀慧  董祥瑞  陈志华  张辉  栗保明  范宝春 《物理学报》2014,63(3):34701-034701
在翼型上翼面壁面附近流场中形成的流向洛伦兹力,可提升翼型的升力减小阻力,然而制约其推广应用的主要瓶颈是极为低下的控制效率,为提高洛伦兹力的控制效率,需研究其控制机理.以翼型绕流的洛伦兹力控制为例,利用双时间步Roe格式及水槽对其进行数值及实验研究.结果表明:洛伦兹力的控制效果随着来流速度的增加而下降,升力增幅和阻力减幅与来流速度大小呈反比关系,但升力增加和阻力减小的规律不变,都是升力先急剧增加随后缓慢增加,而阻力先急剧减小然后再缓慢增加,基本原因为升力和阻力先受洛伦兹力推力的影响而分别增加和减小,随后洛伦兹力作用增加翼面壁面摩擦力,导致升力减小和阻力增加,流向洛伦兹力还导致翼型壁面压力下降,增加翼型升力和压差阻力;壁面摩擦力导致的升力降幅比壁面压力变化导致的升力增幅小,壁面压力变化起主导作用;洛伦兹力推力对阻力的降幅比压差阻力的增幅大,洛伦兹力推力起主导作用,因此阻力减小.  相似文献   

7.
To simulate the flow around an object, we can replace the object with the fluid enclosed by a singular force. We can then simulate the flow on a fixed domain with a fluid–fluid interface supporting the singular force. In this paper, we present a boundary condition capturing approach to determine the singular force for a 3D rigid object. We apply a discontinuous body force to enforce the rigid motion of the fluid replacing the object and compute the singular force based on the kinematics of the object. Due to the singular force and the body force, the flow is not smooth across the interface. We solve the flow using the immersed interface method. Our boundary condition capturing immersed interface method is very efficient and stable, and its accuracy based on the infinity norm is near second order for the velocity and above first order for the pressure.  相似文献   

8.
We discuss how to derive a force or a force density from a measured velocity field. The first part focuses on the integral force a fluid exerts on a body, e.g. lift and drag on an airfoil. Obtaining the correct pressure is crucial; however, it cannot be measured within the flow non-intrusively. Using numerical and experimental test cases, we compare the accuracy achievable with three methods: pressure reconstruction from velocity fields via (1) the differential momentum equation, or (2) the Poisson equation, furthermore, (3) Noca’s momentum equation [Noca, JFS 13(5), 1999], which does not require pressure explicitly. The latter gives the best results for the lift, whereas the first or second approach should be used for the drag. The second part deals with obtaining the distribution of a body force density generated by an actuator. Using a stream function ansatz, we obtain a Laplace equation that allows us to compute the solenoidal part of the force distribution; however, the irrotational part is lost. Furthermore, the wall pressure must be known. We validate this approach using numerical data from a wall jet flow in a rectangular box, driven by a fictitious, solenoidal body force. Reconstructing the force distribution yields an error of less than 10?2 for most of the domain.  相似文献   

9.
This paper simulated the advection and diffusion behaviors of the moving magnetic fluid in the vessel in the high-gradient magnetic field using Navier–Stokes equations. The particles accumulation behavior and the streamlines and the contour of concentration are all affected by the susceptibility, intensity of magnetic field and its gradient, and the flow velocity and also by the difference in size of vessels. The typical accumulation behaves as a solid obstacle in the flow as result of the competing between magnetic and fluid drag forces, and gives rise to a rigidly bound core region followed by a wash away region near the vessel boundary under the condition of 10 mm vessel in width. While the vessel is near 1 mm in width, the magnetic force is exerted almost on the whole vessel area, the vortex is not seen, the wash away area disappears and the concentration changes in the whole vessel. The results of the analysis provide meaningful information on ferrofluid transport and stabilization for various magnetic drug targeting and the magnetic fluid sealing, and other use in industrial and medical fields.  相似文献   

10.
We experimentally study the physical mechanism of the drag reduction of hydrophobic materials in the macroscopic scale. The experiment includes the drag and velocity measurements of laminar boundary layer flow over flat plates, and the observation of air bubbles on the surfaces. The plate surfaces have different wetting and roughness properties. In the drag measurements, the plates with bubbles on the surfaces lead to drag reduction, but not for those without bubbles. Velocity measurement confirms that the flow is laminar and gives apparent fluid slip on the plate wall with bubbles. In observation, air bubbles in macroscopic size emerge and enlarge on hydrophobic surfaces but not on hydrophilic surfaces. Therefore, the drag reduction of hydrophobic materials is explained by the generation of air bubbles of macroscopic size that cause the apparent velocity slip.  相似文献   

11.
We present an immersed interface method for solving the incompressible steady Stokes equations involving fixed/moving interfaces and rigid boundaries (irregular domains). The fixed/moving interfaces and rigid boundaries are represented by a number of Lagrangian control points. In order to enforce the prescribed velocity at the rigid boundaries, singular forces are applied on the fluid at these boundaries. The strength of singular forces at the rigid boundary is determined by solving a small system of equations. For the deformable interfaces, the forces that the interface exerts on the fluid are calculated from the configuration (position) of the deformed interface. The jumps in the pressure and the jumps in the derivatives of both pressure and velocity are related to the forces at the fixed/moving interfaces and rigid boundaries. These forces are interpolated using cubic splines and applied to the fluid through the jump conditions. The positions of the deformable interfaces are updated implicitly using a quasi-Newton method (BFGS) within each time step. In the proposed method, the Stokes equations are discretized via the finite difference method on a staggered Cartesian grid with the incorporation of jump contributions and solved by the conjugate gradient Uzawa-type method. Numerical results demonstrate the accuracy and ability of the proposed method to simulate incompressible Stokes flows with fixed/moving interfaces on irregular domains.  相似文献   

12.
The forces on and resulting dynamics of particulate contaminants near the plasma-sheath boundary in a one-dimensional, steady-state glow discharge are examined. Various expressions for the electric force, including the effects of nonneutrality and particulate spacing on the charge state, are considered, and several different ways to compute the ion drag force are compared. The properties of the particulate traps that result from the interplay of these forces are studied. The effects of the gravitational, neutral drag, and polarization forces are also considered. Time-dependent motion of the particulates, including the effects of a temporally varying, spatially localized particulate density, is also investigated. While some uncertainties exist in the individual expressions for the various forces and in the properties of the discharge, the particulate traps are fairly well defined and consistent with experiments and other analyses  相似文献   

13.
确定分布的展向Lorentz力调制下的槽道湍流涡结构   总被引:1,自引:0,他引:1       下载免费PDF全文
吴文堂  洪延姬  范宝春 《物理学报》2014,63(5):54702-054702
采用直接数值模拟方法,对槽道湍流中确定分布的Lorentz力的流动控制与减阻问题进行研究.讨论了Lorentz力作用于槽道湍流后,流场的特性和涡结构的特性,并对此类Lorentz力对槽道湍流的控制与减阻机理进行了讨论.研究发现:1)Lorentz力诱导的层流流场壁面附近存在梯度极大的展向速度剪切层,该剪切层容易形成流向涡结构;2)在给定合适参数的确定分布的Lorentz力作用下,湍流流场仅剩周期分布的准流向涡;3)与未控制流场相比,控制后的流场中,准流向涡的抬升高度大大降低,从而减小猝发强度,使壁面阻力下降.  相似文献   

14.
刘飞飞  魏守水  魏长智  任晓飞 《物理学报》2014,63(19):194704-194704
浸入边界—晶格波尔兹曼法在流固耦合等复杂的流体系统中得到广泛的应用.本文采用基于速度源修正的浸入边界—晶格玻尔兹曼法,建立了仿生微流体驱动模型,创新性地将波动弹性体的速度引入晶格玻尔兹曼方程,避免了传统浸入边界—晶格玻尔兹曼法中浸入边界速度-结构变形-力之间的转换,提高了计算效率和准确率.研究了行波波动细丝对流场内流动速度和压力的影响,重点分析了驱动模型各项参数对微流体的驱动效果.研究结果表明:细丝长度、频率、振幅的增加引起出口处流量的增加;波长、流体粘滞系数以及细丝位置与出口处流量呈复杂的非线性关系.  相似文献   

15.
The formation of vortices at a moving front of lightweight granular particles is investigated experimentally. The particles used in this study are made of polystyrene foam with three different diameters of nearly uniform size. Pairs of vortices are found to emerge at the moving front at regular intervals, thereby forming a wavy pattern. Once the vortices are produced, the flow velocity tends to increase. A simple analysis suggests the existence of a velocity boundary layer at the moving front, whose thickness increases with increasing particle diameter. The frontal radius of each vortex pair is about the size of this boundary layer; when the radius exceeds this size, the front tends to bifurcate into a train of vortices with the size of the boundary layer. The formation of twin vortices leads to a reduction in the air drag force exerted on the system, and thereby the system attains a higher flow velocity, i.e., a higher conversion rate of gravitational potential energy to the kinetic energy of the particle motion. The higher conversion rate of potential energy thus feeds back to the development of the vortex motion, resulting in the twin vortex formation.  相似文献   

16.
We study the drag force on uniformly moving inclusions which interact linearly with dynamical free field theories commonly used to study soft condensed matter systems. Drag forces are shown to be nonlinear functions of the inclusion velocity and depend strongly on the field dynamics. The general results obtained can be used to explain drag forces in Ising systems and also predict the existence of drag forces on proteins in membranes due to couplings to various physical parameters of the membrane such as composition, phase and height fluctuations.  相似文献   

17.
We present numerical methods for computing two-dimensional Stokes flow driven by forces singularly supported along an open, immersed interface. Two second-order accurate methods are developed: one for accurately evaluating boundary integral solutions at a point, and another for computing Stokes solution values on a rectangular mesh. We first describe a method for computing singular or nearly singular integrals, such as a double layer potential due to sources on a curve in the plane, evaluated at a point on or near the curve. To improve accuracy of the numerical quadrature, we add corrections for the errors arising from discretization, which are found by asymptotic analysis. When used to solve the Stokes equations with sources on an open, immersed interface, the method generates second-order approximations, for both the pressure and the velocity, and preserves the jumps in the solutions and their derivatives across the boundary. We then combine the method with a mesh-based solver to yield a hybrid method for computing Stokes solutions at N2 grid points on a rectangular grid. Numerical results are presented which exhibit second-order accuracy. To demonstrate the applicability of the method, we use the method to simulate fluid dynamics induced by the beating motion of a cilium. The method preserves the sharp jumps in the Stokes solution and their derivatives across the immersed boundary. Model results illustrate the distinct hydrodynamic effects generated by the effective stroke and by the recovery stroke of the ciliary beat cycle.  相似文献   

18.
A method to simulate bodies suspended in a Lattice Boltzmann solvent is proposed. It is based on a generalized reaction force that enforces no-slip boundary conditions at the fluid–body interface as the limiting case of an iterative procedure. A smooth version of the Heaviside function allows to treat spherical particles of arbitrary size and produces smooth hydrodynamic forces as particles move in the continuum. Numerical tests demonstrate the accuracy of the method in reproducing the hydrodynamic field around a single particle and the fluid-mediated forces between pairs of particles. The drag force experienced by a particle moving in a straight channel and at various Reynolds numbers is studied as a non-trivial testcase.  相似文献   

19.
Exact analytical expressions for forces on moving rectangular current-carrying coils above and below an infinite conducting sheet track of arbitrary thickness are developed. These general expressions for the lift and drag forces acting on the excitation coils as functions of speed are investigated for normal flux, null flux and brake flux systems and discussed with the aid of numerical calculations. A concise parameter study is also made. The system velocity characteristics with constant load (technologically more relevant) are given for the first time for normal and null flux systems.  相似文献   

20.
This paper discusses the influence of an endoscope on the peristaltic flow of a couple stress fluid in an annulus under a zero Reynolds number and long wavelength approximation. The inner tube is uniform, rigid, while the outer tube has a sinusoidal wave traveling down its wall. Analytical expressions for the axial velocity, stream function and axial pressure gradient are established. The flow is investigated in a wave frame of reference moving with the velocity of the wave. Numerical calculations are carried out for the pressure rise, frictional forces and trapping. The features of the flow characteristics are analyzed by plotting graphs and discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号