首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
何林李 《高分子科学》2016,34(4):420-430
The aggregation behavior of cyclic rod-coil (RC) diblock copolymers in dilute solutions is investigated through dissipative particle dynamics simulation. By varying the rod length and coil length, cyclic RC copolymers in selective solvents exhibit various morphologies, including spherical micelle, vesicle, bilayer disc, and ribbon bundle structure. Compared with the equivalent linear RC copolymer, only spherical micelle and barrel bundle phase are observed. Rod length is the major factor that controls the liquid-crystalline behavior of RC copolymer systems, while the coil length has a secondary effect on the aggregate morphology. The size of rod bundle varies with the coil length, especially for the end-toend ribbon bundle and side-by-side barrel bundle, which are assembled by cyclic and linear RC copolymer solutions. This finding indicates that the ribbon bundle or nanofiber-like structure in cyclic RC copolymers can be obtained by controlling the rod length and coil length, and thus the optical and electrical properties of RC copolymer would be further controlled and optimized. Results illustrate that cyclization of a linear RC copolymer induces remarkable differences in the rod arrangement and aggregation behavior, thereby indicating the competition between interfacial energy, rod orientational entropy, coil stretching entropy, and packing constraints.  相似文献   

2.
3.
The behavior of rod-coil diblock copolymers close to a surface is discussed by using extended scaling methods. The copolymers are immersed in selective solvent such that the rods are likely to aggregate to gain energy. The rods are assumed to align only parallel to each other, such that they gain a maximum energy by forming liquid crystalline structures. If an aggregate of these copolymers adsorbs with the rods parallel to the surface the rods shift with respect to each other to allow for the chains to gain entropy. It is shown that this shift decays with increasing distance from the surface. The profile of this decay away from the surface is calculated by minimization of the total free energy of the system. The stability of such an adsorbed aggregate and other possible configurations are discussed as well.  相似文献   

4.
We present a hybrid method to investigate the isotropic-nematic (I-N) transition in athermal solutions of rod-coil copolymers. This method incorporates the scaled-particle theory for semiflexible chains with two-chain Monte Carlo simulation for the osmotic second virial coefficient and for the angle-dependent excluded volume. We compare the theoretical prediction with Monte Carlo simulations for fused rod-coil copolymers and find good agreement for both the equation of state and the orientational order parameter. The theory is also used to examine the effects of the bond length, the chain length, and the chain composition on orientational ordering in athermal solutions of rod-coil block copolymers. It predicts I-N transition in rod-coil copolymers with fixed rod length but a variable flexible tail in good agreement with experiments.  相似文献   

5.
Photoinduced reversible transmittance modulation was achieved with the self-assembled block copolymer micelles. A large conformational change of the well-defined rod-coil diblock copolymers containing azobenzene and ether groups in the main chain of the rod block induced a remarkable macroscopic change which can be observed with the naked eye.  相似文献   

6.
Two brush-type amphiphilic diblock copolymers, poly(poly(ethylene glycol)methyl ether methacrylate-block-polystyrene) (P(PEGMA)-b-PS) and poly(glycidyl methacrylate)-block-poly(poly(ethylene glycol)methyl ether methacrylate) (P(GMA)-b-P(PEGMA)) were synthesized, respectively, via consecutive atom-transfer radical polymerizations (ATRPs) and reversible addition-fragmentation chain-transfer (RAFT) polymerizations. The diblock copolymers were characterized by gel permeation chromatography (GPC), (1)H nuclear magnetic resonance (NMR) spectroscopy, and FT-IR spectroscopy. The aggregation behavior of the two amphiphilic diblock copolymers in water was also studied. Scanning electron and transmission electron microscopic images revealed that spherical micelles (40-80 nm in diameter) from self-assembly of the P(PEGMA)-b-PS copolymers and wormlike micelles (60-120 nm in length and 20-30 nm in diameter) from self-assembly of the P(GMA)-b-P(PEGMA) copolymers were prevalent. The spherical P(PEGMA)-b-PS micelles could self-assemble gradually into giant aggregates of several micrometers in diameter.  相似文献   

7.
We present a self-consistent field theory model for the self-assembly behavior of rod-coil block copolymers. The orientational interactions between the rods were modeled through a Maier-Saupe interaction, while the enthalpic interactions between rods and coils were modeled through a standard Flory-Huggins approach. We outline a "real-space" numerical approach to solve the self-consistent field equations for such rod-coil block copolymers. A major focus of our work is upon the nonlamellar phases observed in the experiments on such polymers. To develop a physical understanding of these phases and their regimes of occurrence, we compute the two-dimensional phase diagram for our model. The latter shows significant departures from the one-dimensional phase diagram, but matches qualitatively with the existing experimental results. We also present scaling arguments that rationalize the numerical results for the self-assembly behavior.  相似文献   

8.
A Hartree analysis has been performed for compressible diblock copolymers of incompatible pairs to investigate the concentration fluctuation effects on their microphase separation behavior. The free energy in the Hartree analysis is obtained from the self-consistent correction to its mean-field cousin, which was recently formulated for such copolymer systems. The mean-field phase diagram is shown to be significantly affected by the fluctuation effects as the copolymer chain size N is lowered. An effective interaction chi(cRPA), which carries not only the change in contact interactions but also the compressibility difference between block components, plays a key role in understanding of the phase behavior and the pressure responses of various thermodynamic transitions for the copolymers with finite sizes. In particular, a symmetric copolymer at disorder-to-lamella transition is found to satisfy Nchi(cRPA)(q*)=10.495+41.022N(-1/3) when evaluated at a characteristic wave number q* for ordered microphases.  相似文献   

9.
Two chiral amphiphilic diblock copolymers with different relative lengths of the hydrophobic and hydrophilic blocks, poly(6‐O‐p‐vinylbenzyl‐1,2:3,4‐Di‐O‐isopropylidene‐D ‐galactopyranose)‐b‐poly(N‐isopropylacrylamide) or poly(VBCPG)‐b‐poly(NIPAAM) and poly(20‐(hydroxymethyl)‐pregna‐1,4‐dien‐3‐one methacrylate)‐b‐poly(N‐isopropylacrylamide) or poly(MAC‐HPD)‐b‐poly(NIPAAM) were synthesized via consecutive reversible addition‐fragmentation chain‐transfer polymerizations of VBCPG or MAC‐HPD and NIPAAM. The chemical structures of these diblock copolymers were characterized by 1H nuclear magnetic resonance spectroscopy. These amphiphilic diblock copolymers could self‐assemble into micelles in aqueous solution, and the morphologies of micelles were investigated by transmission electron microscopy. By comparison with the lower critical solution temperatures (LCST) of poly(NIPAAM) homopolymer in deionized water (32 °C), a higher LCST of the chiral amphiphilic diblock copolymer (poly(VBCPG)‐b‐poly(NIPAAM)) was observed and the LCST increased with the relative length of the poly(VBCPG) block in the copolymer from 35 to 47 °C, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7690–7701, 2008  相似文献   

10.
The solution behavior of spherical dendrimers as well as hybrid-linear dendritic diblock copolymers has been extensively studied, and the size, shape, and ability of these polymers to encapsulate small molecules have led to their comparison with traditional micelles. We have recently reported the synthesis of a new dendritic copolymer architecture, the linear-dendritic rod diblock copolymer, and in this work, we examine the solution behavior of these unique polymers in methanol at 25 degrees C, using dynamic light scattering and intrinsic viscosity measurements. The diblock copolymers consist of a linear poly(ethylene oxide)-poly(ethylene imine) diblock copolymer backbone around which poly(amido amine) branches have been divergently synthesized from the poly(ethylene imine) block. The hydrodynamic radii and the viscometric radii of the polymers were found to increase slowly with increasing generation up to generation 3.5; however, after generation 3.5, the radii were found to increase very rapidly. This increase can be explained by an elongation of the dendritic block into a more rodlike configuration and a corresponding breakdown of the spherical approximation used to calculate the radii. The intrinsic viscosity of the amine and ester terminated polymers was found to follow two very different trends at low generation; however, at higher generations, they followed similar, yet slightly different, curves with the values for the amine terminated polymers only a little larger than those of the ester terminated polymers. At low generations, the chemistry of the end groups and its interaction with the solvent were found to be more important, whereas at higher generations, the highly branched nature of the dendritic block was the more important factor. For the ester terminated polymers, a maximum in the intrinsic viscosity occurred at generation 1.5. Since this maximum occurred at a much lower generation number than is traditionally seen for spherical dendrimers, new scaling relations for the intrinsic viscosity of dendritic rod polymers were developed and were found to support this observation. A minimum in the intrinsic viscosity was also observed at generation 3.5 for the ester terminated polymers and a minimum or leveling off in the intrinsic viscosity at generation 4.0 was found for the amine terminated polymers, which can be attributed to the transitioning of the polymers to a more elongated, rodlike shape and the increased influence of the shape factor on the intrinsic viscosity.  相似文献   

11.
陈继忠 《高分子科学》2013,31(9):1242-1249
The self-assembly of the linear rod-coil multiblock copolymers is studied by applying self-consistent-field lattice techniques in a three-dimensional (3D) space. Compared to the copolymer with one rod, the copolymer with more rods (mrod≥2) exhibits rich order-order phase transitions with increasing temperature, where the ordered morphology changes from strips to perforated lamellae and finally to lamellae. In addition, taking the copolymer with mrod = 2 as a representative, we further study the effects of the volume fractions of the rods, the spacer coils and the end coils on the phase behaviors respectively, by which the detailed self-assembled mechanism of the linear rod-coil multiblock copolymers is revealed. Our results are expected to provide guidance for the design of the rod-coil materials.  相似文献   

12.
Developing microstructures, such as low molecular aggregates, spherical micelles and multi-compartment micelles, is an expanding area of research in Materials Science. By applying an atom transfer radical polymerization (ATRP) process to cross-linkable fluorinated diblock copolymers and analyzing the data we are able to demonstrate the potential for developing films with different micro-structures for additional biological research. Applying the Dissipative Particle Dynamic (DPD) Method, Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) techniques to cross-linkable fluorinated diblock copolymers of (methyl methacrylate-co-hydroxyethyl methacrylate-co-butyl methacrylate)-b-2-(perfluoroalkyl)ethyl methacrylate (MMA-co-HEMA-co-BMA-b-FMA) we were able to analyze the structures and their relationships to the aggregation of various microstructure formations through the use of various solvents in the process. For the self-assembly of the cross-linkable diblock copolymer in solutions, the DPD simulation results are only in qualitative agreement with experimental data of aggregate morphologies and sizes. This suggests an improved approach to creating materials and methods necessary for studying microstructures in films used in other research areas. Our work examines whether using selective solvents can be easily extended to prepare aggregates with different morphologies, which is an effective shortcut to obtain films with different microstructures. DPD simulation can be considered as an adjunct to experiments and provides other valuable information for the experiment.  相似文献   

13.
Copper(I)‐mediated living radical polymerization was used to synthesize amphiphilic block copolymers of poly(n‐butyl methacrylate) [P(n‐BMA)] and poly[(2‐dimethylamino)ethyl methacrylate] (PDMAEMA). Functionalized bromo P(n‐BMA) macroinitiators were prepared from monofunctional, difunctional, and trifunctional initiators: 2‐bromo‐2‐methylpropionic acid 4‐methoxyphenyl ester, 1,4‐(2′‐bromo‐2′‐methyl‐propionate)benzene, and 1,3,5‐(2′‐bromo‐2′‐methylpropionato)benzene. The living nature of the polymerizations involved was investigated in each case, leading to narrow‐polydispersity polymers for which the number‐average molecular weight increased fairly linearly with time with good first‐order kinetics in the monomer. These macroinitiators were subsequently used for the polymerization of (2‐dimethylamino)ethyl methacrylate to obtain well‐defined [P(n‐BMA)xb‐PDMAEMAy]z diblock (15,900; polydispersity index = 1.60), triblock (23,200; polydispersity index = 1.24), and star block copolymers (50,700; polydispersity index = 1.46). Amphiphilic block copolymers contained between 60 and 80 mol % hydrophilic PDMAEMA blocks to solubilize them in water. The polymers were quaternized with methyl iodide to render them even more hydrophilic. The aggregation behavior of these copolymers was investigated with fluorescence spectroscopy and dynamic light scattering. For blocks of similar comonomer compositions, the apparent critical aggregation concentration (cac = 3.22–7.13 × 10?3 g L?1) and the aggregate size (ca. 65 nm) were both dependent on the copolymer architecture. However, for the same copolymer structure, increasing the hydrophilic PDMAEMA block length had little effect on the cac but resulted in a change in the aggregate size. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 439–450, 2002; DOI 10.1002/pola.10122  相似文献   

14.
15.
A bifunctional initiator was synthesized and used for a sequence of a nickel initiated polymerization of gamma-benzyl-L-glutamate-N-carboxy anhydride and atom transfer radical polymerization of methyl methacrylate yielding a rod-coil block copolymer.  相似文献   

16.
A block copolymer containing a rodlike block is studied for its adsorption and formation of nanostructured thin films on the substrate surface. The block copolymer is poly(styrene-b-3-triethoxysilylpropylisocyanate) (PS-b-PIC) of which the PIC chain consists of repeating amide units with triethoxysilyl side groups. As the copolymer chains are adsorbed onto silica surfaces, the PIC blocks pack laterally on the plane in a smectic manner, and the PS chains segregate along the ordered PIC chains, resulting in stripe patterns. The width of the stripes formed on the silica surface appeared to be much larger that on the carbon surface. This was accounted for by the bilayered smectic packing of the rod blocks that is induced by rod-surface attractive interaction. The periodicity of the stripe pattern on the carbon surface indicates that interdigitated packing is preferred by the copolymers on the hydrophobic surface in a manner similar to those in the bulk state of rod-coils. Excess rod-coils on the bilayered smectic layer resulted in a terraced morphology due to large difference in the periodicity between the bilayered smectic layer at the substrate surface and the interdigitated smectic layer in the bulk.  相似文献   

17.
Using the self-consistent field theory (SCFT), we investigate the phase behavior of a mixture of diblock copolymers and nanoparticles with monodisperse polymer chains tethered to their surfaces. We assume the size of the nanoparticles to be much smaller than that of the attached polymer chains and therefore model the particles with their grafted polymer "shell" as star polymers. The polymer chains attached to the particles are of the same species as one of the blocks of the symmetric diblock copolymer. Of primary interest is how to tune the shell of the particle by changing both the length and number of tethered polymers in order to achieve higher loading of nanoparticles within an ordered structure without macrophase separation occurring. We find that the phase behavior of the system is very sensitive to the size of the particle including its tethered shell. The region of microphase separation is increased upon decreasing the star polymer size, which may be achieved by shortening and/or removing tethered polymer chains. To explore the possible structures in these systems we employ SCFT simulations that provide insight into the arrangement of the different species in these complex composites.  相似文献   

18.
A detailed study of the self-assembly ability of triblock coil-rod-coil copolymers containing a rigid di(styryl)-anthracene segment covalently linked to oxadiazole-based blocks and their binary blends with oxadiazole-based homopolymers is presented here. The self-organized microdomains seem to pack into a fascinating ordered hexagonal structure obtained at a critical concentration without any significant influence of the sample preparation method, based on evidence obtained by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and fluorescence microscopy studies. The compatibilization efficiency of these coil-rod-coil copolymers in polymer blends composed of an electron-accepting polyoxadiazole and a luminescent polyanthracene-based pair was studied by atomic force microscopy (AFM). The common feature of all observed morphologies is the compatibilizing function of the rod-coil molecule, which intercalates between the incompatible domains to prevent the formation of well-defined phase separated nanostructured surfaces.  相似文献   

19.
N3-苯丙氨酸与嵌段共聚物聚乙二醇-b-聚炔丙基缩水甘油(MPEO-b-PGPE)发生"click"反应,合成了具有光学活性的两亲嵌段共聚物聚乙二醇-B-聚L-苯丙氨酸三唑基缩水甘油(MPEO-b-PGTP),用1H-NMR和元素分析对其结构和组成进行表征.并对其自组装行为进行研究,滴体积法测定MPEO-b-PGTP溶...  相似文献   

20.
The effects of a series of Hofmeister anions on the phase behaviors of a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer were investigated with an automated melting point system. Well hydrated anions and poorly hydrated anions interacted with the polymer differently and further affected the phase transition of the polymer. Poorly hydrated anions worked through changing the interfacial tension at the polymer/aqueous interface and in enhancing the polymer hydration by ion binding. The phase transition of the polymer in the presence of well hydrated anions correlated directly to the hydration entropy of the anions. As a consequence, the polymer showed a two-step phase transition in solutions containing poorly hydrated anions while displayed a single-step phase transition in the presence of well hydrated anions. The mechanisms of how ions interact with the polymer and further modulate its phase behaviors were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号