首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nine-step synthesis of the title triterpenol from (E,E)-farnesol using a two-stage cis-C5-homologation procedure is descrilaed.  相似文献   

3.
4.
Summary.  Ab initio calculations at the HF/6-31G* level of theory for geometry optimization and the MP2/6-31G*//HF/6-31G* level for a single point total energy calculation are reported for (Z,Z)-, (E,Z)-, and (E,E)-cycloocta-1,4-dienes. The C 2-symmetric twist-boat conformation of (Z,Z)-cycloocta-1,4-diene was calculated to be by 3.6 kJ·mol−1 more stable than the C S-symmetric boat-chair form; the calculated energy barrier for ring inversion of the twist-boat conformation via the C S-symmetric boat-boat geometry is 19.1 kJ·mol−1. Interconversion between twist-boat and boat-chair conformations takes place via a half-chair (C 1) transition state which is 43.5 kJ·mol−1 above the twist-boat form. The unsymmetrical twist-boat-chair conformation of (E,Z)-cycloocta-1,4-diene was calculated to be by 18.7 kJ·mol−1 more stable than the unsymmetrical boat-chair form. The calculated energy barrier for the interconversion of twist-boat-chair and boat-chair is 69.5 kJ·mol−1, whereas the barrier for swiveling of the trans-double bond through the bridge is 172.6 kJ·mol−1. The C S symmetric crown conformation of the parallel family of (E,E)-cycloocta-1,4-diene was calculated to be by 16.5 kJ·mol−1 more stable than the C S-symmetric boat-chair form. Interconversion of crown and boat-chair takes place via a chair (C S) transition state which is 37.2 kJ·mol−1 above the crown conformation. The axial- symmetrical twist geometry of the crossed family of (E,E)-cycloocta-1,4-diene is 5.9 kJ·mol−1 less stable than the crown conformation. Corresponding author. E-mail: isayavar@yahoo.com Received March 25, 2002; accepted April 3, 2002  相似文献   

5.
Initiation and propagation rate constants of carbocationic and carbanionic polymerizations can be predicted by the correlation equation log k20 °C = s(N + E), where E characterizes the electrophilicity of carbocations and electron-deficient alkenes, and N characterizes the nucleophilicity of carbanions and electron-rich alkenes. Since the nucleophile-specific slope parameter s is generally close to 1, it can be neglected in a first approximation, and the two-dimensional representation in Figure 3 illustrates the gradual change from carbanionic to carbocationic polymerizations with Hall's “initiation by bond-formation” as the link connecting the two ranges. The value of model studies for understanding ionic polymerizations is illustrated.  相似文献   

6.
7.
Ab initio calculations at HF/6-31G* level of theory for geometry optimization and MP2/6-31G*//HF/6-31G* for a single point total energy calculation are reported for the three geometrical isomers of cycloocta-l,5-diene 1–3.  相似文献   

8.
9.
Cyclohexene oxide reacted with n-butylpotassium unexpectedly to produce 2-butylcyclohexanone in a 10% isolated yield of its semicarbazone derivative. Based on previous literature, a three-part mechanism is proposed that implies that a yield greater than 33% is not possible.

Supplemental materials are available for this article. Go to the publisher's online edition of Synthetic Communications® to view the free supplemental file.  相似文献   

10.
Lindlar hydrogenation of substituted methyl (E,E)-deca-7,9-dien-2-ynoates and substituted methyl (E,E)-undeca-8,10-dien-2-ynoates affords selectively the corresponding (Z,E,E)-trienes.  相似文献   

11.
The E ? Z photoisomerization of the title compound (UA) (a naturally occurring sunscreen) has been studied in aqueous solution. At a UA concentration of 6mM and using 313nm excitation, φE→z= 0.52, φZ→E= 0.47 and the photostationary state is 34% E. Under these conditions, loss of UA is minimal. Low energy triplet quenchers fail to impede the isomerization, but the reaction can be induced by several triplet sensitizers. The ET for UA is estimated to be approximately 55 kcal/mol.  相似文献   

12.
13.
14.
15.
Stereoselective syntheses on a gram scale of (3Z,6E,8E)-, (3Z,6E,8Z)-and (3Z,6Z,8Z)-3,6,8-dodecatrien-1-ol, 8, 9 and 10, respectively, are described. A key step of the synthesis of 8 consisted of a copper-mediated coupling reaction between 4-(2-tetrahydropyranyloxy)-1-butynylmagnesium bromide (15) and the mesyl ester of (2E,4E)-2,4-octadien-1-ol (14). A similar copper-mediated reaction between 15 and the mesyl ester of (E)-2-octen-4-yn-1-ol (19) was used to construct the C-12 carbon skeleton of 9. On the other hand, the synthesis of 10 was based on a palladium-promoted reaction between (Z)-1-bromo-1-pentene (23) and the organozinc bromide derived from 3,6-heptadiyn-1-yl acetate (27).  相似文献   

16.
H.-D. Scharf  J. Janus 《Tetrahedron》1979,35(3):385-387
The (1Z,3E)- and (1Z,3Z)-isomers of wisanine were synthesized and characterized by their spectroscopic data.  相似文献   

17.
trans-11,12-Epoxy-(6Z,9Z)-6,9-henicosadiene (posticlure) has been identified from a pheromone gland of the lymantriid species, Orgyia postica. Since the diversity of Lepidoptera suggests that some species utilize the structure-related epoxy compound as a sex pheromone component, epoxydienes and epoxytrienes derived from (6Z,9Z,11E)-6,9,11-trienes and (3Z,6Z,9Z,11E)-3,6,9,11-tetraenes with a C19–C21 chain were systematically synthesized and the chemical data were accumulated in order to contribute to a new pheromone research. Peracid oxidation of each triene and each tetraene produced, respectively, a mixture of three epoxydienes (cis-6,7-epoxy-9,11-diene; cis-9,10-epoxy-6,11-diene; and trans-11,12-epoxy-6,9-diene) and four epoxytrienes (cis-3,4-epoxy-6,9,11-triene; cis-6,7-epoxy-3,9,11-triene; cis-9,10-epoxy-3,6,11-triene; and trans-11,12-epoxy-3,6,9-triene). While the 9,10-epoxy compounds were unstable and, interestingly, converted into 9-ketone derivatives after chromatography over SiO2, each positional isomer was isolated by HPLC equipped with an ODS column, and the chemical structure was determined by NMR analysis. On the GC-MS analysis with a DB-23 column, the positional isomers were also eluted separately and characteristic mass spectra were proposed. By comparing the spectral data of the epoxy compounds with a different carbon chain, diagnostic fragment ions reflecting the chemical structure were determined as follows: m/z 79, 109, 113, and M-114 for the 6,7-epoxydienes; m/z 69, 97, 111, 139, and M-111 for the 9,10-epoxydienes; m/z 57, 79, 109, 136, M-151, and M-111 for the 11,12-epoxydienes; m/z 79, 91, 105, and 119 for the 3,4-epoxytrienes; m/z 79, 124, M-124, M-96, and M-69 for the 6,7-epoxytrienes; m/z 79, 95, 109, 137, and M-108 for the 9,10-epoxytrienes; and m/z 79, 134, M-149, M-109, and M-95 for the 11,12-epoxytrienes.  相似文献   

18.
19.
The stereospecific position of the H4 proton in the PMR spectra of 3-benzyl-idenephthalides identifies unambiguously the E and Z isomers in a mixture. The IR spectra of off-planar deformation vibrations of the C=C bond in the 990–970 cm–1 region have strong absorption bands, assigned to the E and Z isomers. The strong short-wave band (260 nm) for 3-benzylidenephthalides, having only one benzene ring in the indan moiety, suggests the presence of the E form (=28,000). The long-wave absorption band at 390–430 nm belongs to the Z isomers (=21,000–31,000). 3-Benzylidenephthalides which have no carbonyl groups in their molecules, show fluorescence (f1=540–560 nm in EtOH).N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 2, pp. 309–314, February, 1992.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号