首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligonucleotides tethered by an alkylene linkage between the O6‐atoms of two consecutive 2′‐deoxyguanosines, which lack a phosphodiester linkage between these residues, have been synthesized as a model system of intrastrand cross‐linked (IaCL) DNA. UV thermal denaturation studies of duplexes formed between these butylene‐ and heptylene‐linked oligonucleotides with their complementary DNA sequences revealed about 20 °C reduction in stability relative to the unmodified duplex. Circular dichroism spectra of the model IaCL duplexes displayed a signature characteristic of B‐form DNA, suggesting minimal global perturbations are induced by the lesion. The model IaCL containing duplexes were investigated as substrates of O6‐alkylguanine DNA alkyltransferase (AGT) proteins from human and E. coli (Ada‐C and OGT). Human AGT was found to repair both model IaCL duplexes with greater efficiency towards the heptylene versus butylene analog adding to our knowledge of substrates this protein can repair.  相似文献   

2.
Oligonucleotides containing an alkylene intrastrand cross‐link (IaCL) between the O6‐atoms of two consecutive 2′‐deoxyguanosines (dG) were prepared by solid‐phase synthesis. UV thermal denaturation studies of duplexes containing butylene and heptylene IaCL revealed a 20 °C reduction in stability compared to the unmodified duplexes. Circular dichroism profiles of these IaCL DNA duplexes exhibited signatures consistent with B‐form DNA. Human O6‐alkylguanine DNA alkyltransferase (hAGT) was capable of repairing both IaCL containing duplexes with slightly greater efficiency towards the heptylene analog. Interestingly, repair efficiencies of hAGT towards these IaCL were lower compared to O6‐alkylene linked IaCL lacking the 5′‐3′‐phosphodiester linkage between the connected 2′‐deoxyguanosine residues. These results demonstrate that the proficiency of hAGT activity towards IaCL at the O6‐atom of dG is influenced by the backbone phosphodiester linkage between the cross‐linked residues.  相似文献   

3.
Tetrahedron DNA structures were formed by the assembly of three-way junction ( TWJ ) oligonucleotides containing O6-2′-deoxyguanosine-alkylene-O6-2′-deoxyguanosine (butylene and heptylene linked) intrastrand cross-links (IaCLs) lacking a phosphodiester group between the 2′-deoxyribose residues. The DNA tetrahedra containing TWJs were shown to undergo an unhooking reaction by the human DNA repair protein O6-alkylguanine DNA alkyltransferase (hAGT) resulting in structure disassembly. The unhooking reaction of hAGT towards the DNA tetrahedra was observed to be moderate to virtually complete depending on the protein equivalents. DNA tetrahedron structures have been explored as drug delivery platforms that release their payload in response to triggers, such as light, chemical agents or hybridization of release strands. The dismantling of DNA tetrahedron structures by a DNA repair protein contributes to the armamentarium of approaches for drug release employing DNA nanostructures.  相似文献   

4.
Short DNA duplexes containing an N(4)C-ethyl-N(4)C interstrand cross-link, C-C, were synthesized on controlled pore glass supports. Duplexes having two, three, or four A/T base pairs on either side of the C-C cross-link and terminating with a C(4) overhang at their 5'-ends were prepared. The cross-link was introduced using a convertible nucleoside approach. Thus, an oligonucleotide terminating at its 5'-end with O(4)-triazoyl-2'-deoxyuridine was first prepared on the support. The triazole group of support-bound oligomer was displaced by the aminoethyl group of 5'-dimethoxytrityl-3'-O-tert-butyldimethylsilyl-N(4)-(2-aminoethyl)deoxycytidine to give the cross-link. The dimethoxytrityl group was removed, and the upper and lower strands of the duplex were extended from two 5'-hydroxyl groups of the cross-link using protected nucleoside 3'-phosphoramidites. The tert-butyldimethylsilyl group of the resulting partial duplex was then removed, and the chain was extended in the 3'-direction from the resulting 3'-hydroxyl of the cross-link using protected nucleoside 5'-phosphoramidites. The cross-linked duplexes were purified by HPLC and characterized by enzymatic digestion and MALDI-TOF mass spectrometry. Duplexes with three or four A/T base pairs on either side of the C-C cross-link gave sigmoidal shaped A(260) profiles when heated, a behavior consistent with cooperative denaturation of the A/T base pairs. Each cross-linked duplex could be ligated to an acceptor duplex using T4 DNA ligase, a result that suggests that the C-C cross-link does not interfere with the ligation reaction, even when it is located only two base pairs from the site of ligation. The ability to synthesize duplexes with a defined interstrand cross-link and to incorporate these duplexes into longer pieces of DNA should enable preparation of substrates that can be used for a variety of biophysical and biochemical experiments, including studies of DNA repair.  相似文献   

5.
We report here the generation of mutants of the human O(6)-alkylguanine-DNA alkyltransferase (hAGT) for the efficient in vivo labeling of fusion proteins with synthetic reporter molecules. Libraries of hAGT were displayed on phage, and mutants capable of efficiently reacting with the inhibitor O(6)-benzylguanine were selected based on their ability to irreversibly transfer the benzyl group to a reactive cysteine residue. Using synthetic O(6)-benzylguanine derivatives, the selected mutant proteins allow for a highly efficient covalent labeling of hAGT fusion proteins in vivo and in vitro with small molecules and therefore should become important tools for studying protein function in living cells. In addition to various applications in proteomics, the selected mutants also yield insight into the interaction of the DNA repair protein hAGT with its inhibitor O(6)-benzylguanine.  相似文献   

6.
Chimeric DNA molecules containing four different linking groups, the natural phosphate, 5′‐methylenephosphonate, bis(methylene)phosphinate, and bis(methylene) sulfone (see Fig. 1), were directly compared for their ability to form duplexes with complementary DNA and DNA chimeras. From melting temperatures for analogous complementary sequences, general conclusions about the impact of geometric distortion of the internucleotide linkage around the two P O C bridges were drawn, as were conclusions about the impact on duplex stability that arises from the removal of the negative charge in the linking group. Each structural perturbation diminished the melting temperature, by ca. −2.5° per modification for the 5′‐methylenephosphonate, −3.5° per modification for the bis(methylene)phosphinate, and −4.5° per modification for the bis(methylene) sulfone linker. These results have implications for DNA chemistry including the design of ‘antisense' candidates and the proposal of alternative genetic materials in the search for non‐terrean life.  相似文献   

7.
2'-O-(3-(Furan-2-yl)propyl)adenosine was synthesized and evaluated for interstrand crosslink (ICL) formation in DNA duplexes. In situ oxidation of the furan moiety with NIS showed rapid crosslink formation to dA and dC, while dT and dG were inactive.  相似文献   

8.
The human DNA-repair O (6)-alkylguanine DNA alkyltransferase (MGMT or hAGT) protein protects DNA from environmental alkylating agents and also plays an important role in tumor resistance to chemotherapy treatment. Available inhibitors, based on pseudosubstrate analogs, have been shown to induce substantial bone marrow toxicity in vivo. These deficiencies and the important role of MGMT as a resistance mechanism in the treatment of some tumors with dismal prognosis like glioblastoma multiforme, the most common and lethal primary malignant brain tumor, are increasing the attention toward the development of improved MGMT inhibitors. Here, we report the identification for the first time of novel non-nucleosidic MGMT inhibitors by using docking and virtual screening techniques. The discovered compounds are shown to be active in both in vitro and in vivo cellular assays, with activities in the low to medium micromolar range. The chemical structures of these new compounds can be classified into two families according to their chemical architecture. The first family corresponds to quinolinone derivatives, while the second is formed by alkylphenyl-triazolo-pyrimidine derivatives. The predicted inhibitor protein interactions suggest that the inhibitor binding mode mimics the complex between the excised, flipped out damaged base and MGMT. This study opens the door to the development of a new generation of MGMT inhibitors.  相似文献   

9.
The syntheses of the novel pyrrolo[2,3-d]pyrimidine-based heterocycles as tricyclic analogues of O6-methylguanine are described. Compound 5 is a weak inhibitor of human O6-alkylguanine DNA alkyltransferase.  相似文献   

10.
Pyrimidine base pairs in DNA duplexes selectively capture metal ions to form metal ion-mediated base pairs, which can be evaluated by thermal denaturation, isothermal titration calorimetry, and nuclear magnetic resonance spectroscopy. In this critical review, we discuss the metal ion binding of pyrimidine bases (thymine, cytosine, 4-thiothymine, 2-thiothymine, 5-fluorouracil) in DNA duplexes. Thymine-thymine (T-T) and cytosine-cytosine (C-C) base pairs selectively capture Hg(II) and Ag(I) ions, respectively, and the metallo-base pairs, T-Hg(II)-T and C-Ag(I)-C, are formed in DNA duplexes. The metal ion binding properties of the pyrimidine-pyrimidine pairs can be changed by small chemical modifications. The binding selectivity of a metal ion to a 5-fluorouracil-5-fluorouracil pair in a DNA duplex can be switched by changing the pH of the solution. Two silver ions bind to each thiopyrimidine-thiopyrimidine pair in the duplexes, and the duplexes are largely stabilized. Oligonucleotides containing these bases are commercially available and can readily be applied in many scientific fields (86 references).  相似文献   

11.
Quinolones are gyrase inhibitors that are widely used as antibiotics in the clinic. When covalently attached to oligonucleotides as 5'-acylamido substituents, quinolones were found to stabilize duplexes of oligonucleotides against thermal denaturation. For short duplexes, such as qu-T*GCGCA, where qu is a quinolone residue and T is a 5'-amino-5'-deoxythymidine residue, an increase in the UV melting point of up to 27.8 degrees C was measured. The stabilizing effect was demonstrated for all quinolones tested, namely nalidixic acid, oxolinic acid, pipemidic acid, cinoxacin, norfloxacin, and ofloxacin. The three-dimensional structure of (oa-T*GCGCA)2, where oa is an oxolinic acid residue, was solved by two-dimensional NMR spectroscopy and restrained molecular dynamics. In this complex, the oxolinic acid residues disrupt the terminal T1:A6 base pairs and stack on the G2:C5 base pairs. The displaced adenosine residues bind in the minor groove of the core duplex, while the thymidine residues pack against the oxolinic acid residues. The "molecular cap" thus formed fits tightly on the G:C base pairs, resulting in increased base-pairing fidelity, as demonstrated in UV melting experiments with the sequence oa-T*GGTTGAC and target strands containing a mismatched nucleobase. The structure of the "molecular cap" with its disrupted terminal base pair may also be helpful for modeling how quinolones block re-ligation of DNA strands in the active site of gyrases.  相似文献   

12.
Liu  Y. C.  Li  Y. Y.  Qi  H. L.  Hu  H. S.  Zhang  K. J.  Lei  R. X.  Liu  J. N.  Zheng  X. D. 《Russian Journal of Coordination Chemistry》2019,45(6):446-456
Russian Journal of Coordination Chemistry - The complex [ScL2(NO3)]2 was prepared by Sc(NO3)3 · 6H2O with 2-[(8-hydroxyquinolinyl)methylene]hydrazinecarboxamide (LH), and characterized by...  相似文献   

13.
The N7-Pt-N7 adjacent G,G intrastrand DNA cross-link responsible for cisplatin anticancer activity is dynamic, promotes local "melting" in long DNA, and converts many oligomer duplexes to single strands. For 5'-d(A1T2G3G4G5T6A7C8C9C10A11T12)-3' (G3), treatment of the (G3)2 duplex with five pairs of [LPt(H2O)2]2+ enantiomers (L = an asymmetric diamine) formed mixtures of LPt-G3 products (1 Pt per strand) cross-linked at G3,G4 or at G4,G5 in all cases. L chirality exerted little influence. For primary diamines L with bulk on chelate ring carbons (e.g., 1,2-diaminocyclohexane), the duplex was converted completely into single strands (G3,G4 coils and G4,G5 hairpins), exactly mirroring results for cisplatin, which lacks bulk. In sharp contrast, for secondary diamines L with bulk on chelate ring nitrogens (e.g., 2,2'-bipiperidine, Bip), unexpectedly stable duplexes having two platinated strands (even a unique G3,G4/G4,G5 heteroduplex) were formed. After enzymatic digestion of BipPt-G3 duplexes, the conformation of the relatively nondynamic G,G units was shown to be head-to-head (HH) by HPLC/mass spectrometric characterization. Because the HH conformation dominates at the G,G lesion in duplex DNA and in the BipPt-G3 duplexes, the stabilization of the duplex form only when the L nitrogen adducts possess bulk suggests that H-bonding interactions of the Pt-NH groups with the flanking DNA lead to local melting and to destabilization of oligomer duplexes. The marked dependence of adduct properties on L bulk and the minimal dependence on L chirality underscore the need for future exploration of the roles of the L periphery in affecting anticancer activity.  相似文献   

14.
A microstructured ionic crystal, K(3)[Cr(3)O(OOCH)(6)(H(2)O)(3)][alpha-SiW(12)O(40)].16 H(2)O (1) was synthesized by the complexation of the Keggin-type polyoxometalate of [alpha-SiW(12)O(40)](4-) with a macrocation of [Cr(3)O(OOCH)(6)(H(2)O)(3)](+). Compound 1 possessed a straight channel, with an opening of approximately 0.5x0.8 nm, which contained the water of crystallization. The use of the macrocation with large size (0.7 nm) and small charge (+1) reduced the anion-cation interaction and was essential for the channel formation. The molecular structures of the polyoxometalate and the macrocation in 1 were retained under vacuum at 473 K. Analogues of 1 were synthesized with [alpha-PVW(11)O(40)](4-) or [Fe(3)O(OOCH)(6)(H(2)O)(3)](+). The water of crystallization in 1 was removed under vacuum at room temperature to form the closely packed guest-free phase 2. Compound 2 reversibly and repeatedly included water and polar organic molecules with two carbon atoms or less. Guest inclusion was highly selective and a difference of even one methylene group in the organic guest molecule was discriminated by the host. Polar organic molecules with longer methylene chains and nonpolar molecules such as dinitrogen and methane were completely excluded. The guest-inclusion properties could be explained by the ion-dipole interaction between the host and the guest, which is proportional to the dipole moment of the guest molecule and inversely proportional to the ion-dipole (host-guest) distance. Thus, small polar molecules were selectively absorbed. These distinctive guest-inclusion properties were successfully applied to the oxidation of methanol from a mixture of C(1) and C(2) alcohols. These results show unique guest inclusion and catalysis by rationally designed ionic crystals.  相似文献   

15.
The new imidazopyridopyrimidine:naphthyridine base-pairing motifs, ImO(O):NaN(N) and ImN(N):NaO(O), were designed. Among the base pairs examined, DNA duplexes containing ImN(N):NaO(O) pair(s) consisting of a DAAD:ADDA hydrogen bonding pattern (D = donor, A = acceptor) were markedly stabilized thermally and thermodynamically.  相似文献   

16.
Therapeutic bifunctional alkylating agents generate interstrand cross-links in duplex DNA. As part of our continuing studies on DNA duplexes that contain alkyl interstrand cross-links, we have synthesized a cross-link that bridges the N(3) positions of a mismatched thymidine base pair. This cross-link, which is similar to the N(3)C-alkyl-N(3)C cross-link that has been observed between mismatched cytosine base pairs, was introduced by first incorporating a cross-linked phosphoramidite unit at the 5'-end of an oligonucleotide chain. Fully cross-linked duplexes were then synthesized using an orthogonal approach to selectively remove protecting groups, thus allowing construction of the cross-linked duplex via conventional solid-phase oligonucleotide synthesis. Short DNA duplexes with alkyl cross-links of various lengths (two, four, and seven methylene units) were prepared, and their physical properties were studied via UV thermal denaturation and circular dichroism spectroscopy. These linkers were found to stabilize the duplexes by 37, 31, and 16 degrees C for the two-, four-, and seven-carbon linkers, respectively, relative to a non-cross-linked duplex. Circular dichroism spectra suggested that these lesions induce very little deviation in the global structure relative to the non-cross-linked duplex DNA control. Molecular models show that the two-carbon cross-link spans the distance between the N(3) atoms of the T-T mismatch without perturbing the helix structure, whereas the longer linkers, particularly the seven-carbon linker, tend to push the thymines apart, creating a local distortion. This perturbation may account for the lower thermal stability of the seven-carbon versus two-carbon cross-linked duplex.  相似文献   

17.
Spectroscopic techniques are employed to probe relationships between structural dynamics and charge transfer (CT) efficiency in DNA duplexes and DNA:RNA hybrids containing photoexcited 2-aminopurine (Ap). To better understand the variety of interactions and reactions, including CT, between Ap and DNA, the fluorescence behavior of Ap is investigated in a full series of redox-inactive as well as redox-active assemblies. Thus, Ap is developed as a dual reporter of structural dynamics and base-base CT reactions in nucleic acid duplexes. CD, NMR, and thermal denaturation profiles are consistent with the family of DNA duplexes adopting a distinct conformation versus the DNA:RNA hybrids. Fluorescence measurements establish that the d(A)-r(U) tract of the DNA:RNA hybrid exhibits enhanced structural flexibility relative to that of the d(A)-d(T) tract of the DNA duplexes. The yield of CT from either G or 7-deazaguanine (Z) to Ap in the assemblies was determined by comparing Ap emission in redox-active G- or Z-containing duplexes to otherwise identical duplexes in which the G or Z is replaced by inosine (I), the redox-inactive nucleoside analogue. Investigations of CT not only demonstrate efficient intrastrand base-base CT in the DNA:RNA hybrids but also reveal a distance dependence of CT yield that is more shallow through the d(A)-r(U) bridge of the A-form DNA:RNA hybrids than through the d(A)-d(T) bridge of the B-form DNA duplexes. The shallow distance dependence of intrastrand CT in DNA:RNA hybrids correlates with the increased conformational flexibility of bases within the hybrid duplexes. Measurements of interstrand base-base CT provide another means to distinguish between the A- and B-form helices. Significantly, in the A-form DNA:RNA hybrids, a similar distance dependence is obtained for inter- and intrastrand reactions, while, in B-DNA, a more shallow distance dependence is evident with interstrand CT reactions. These observations are consistent with evaluations of intra- and interstrand base overlap in A- versus B-form duplexes. Overall, these data underscore the sensitivity of CT chemistry to nucleic acid structure and structural dynamics.  相似文献   

18.
Pyrrolidine-amide oligonucleotide mimics (POMs) exhibit promising properties for potential applications, including in vivo DNA and RNA targeting, diagnostics and bioanalysis. Before POMs can be evaluated in these applications it is first necessary to synthesise and establish the properties of fully modified oligomers, with biologically relevant mixed sequences. Accordingly, Boc-Z-protected thyminyl, adeninyl and cytosinyl POM monomers were prepared and used in the first successful solid phase synthesis of a mixed sequence POM, Lys-TCACAACTT-NH2. UV thermal denaturation studies revealed that the POM oligomer is capable of hybridising with sequence selectivity to both complementary parallel and antiparallel RNA and DNA strands. Whilst the duplex melting temperatures (Tm) were higher than the corresponding duplexes formed with isosequential PNA, DNA and RNA oligomers the rates of association/dissociation of the mixed sequence POM with DNA/RNA targets were noticeably slower.  相似文献   

19.
A series of new O6-BG derivatives (14-21,23-30) were synthesized as inactivators of O6-Alkylguanine-DNA alkyltransferase (AGT), and their ability to inhibit AGT was preliminary evaluated by MTT with O6-BG as the control. The result suggested compound 30 displayed a higher activity than O6-BG.  相似文献   

20.
The 7-deazaguanine (2-aminopyrrolo[2,3-d]pyrimidin-4-one) C(8)-(2'-deoxy-beta-D-ribofuranoside) (6b), which possesses an unusual glycosylation site, was synthesized and incorporated in oligonucleotides. The oligonucleotides were prepared by solid-phase synthesis using phosphoramidite chemistry and were hybridized to form duplex DNA. Compound 6b is able to form base pairs with 2'-deoxy-5-methylisocytidine (m(5)isoC(d)) in oligonucleotide duplexes with antiparallel chain orientation and with dC in parallel duplex DNA. Thus, the C(8)-nucleoside 6b shows a similar base recognition as 2'-deoxyisoguanosine but not as 2'-deoxyguanosine. This indicates that the nucleic acid recognition not only depends on the donor-acceptor pattern of the nucleobase but is influenced by the glycosylation site. Base pairs of compound 6b formed with canonical and modified nucleosides are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号