首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
(1)H spin-lattice relaxation rates in glycerol solutions of selected nitroxide radicals at temperatures between 200 K and 400 K were measured at 15 MHz and 25 MHz. The frequency and temperature conditions were chosen in such a way that the relaxation rates go through their maximum values and are affected by neither the electron spin relaxation nor the electron-nitrogen nucleus hyperfine coupling, so that the focus could be put on the mechanisms of motion. By comparison with (1)H spin-lattice relaxation results for pure glycerol, it has been demonstrated that the inter-molecular electron spin-proton spin dipole-dipole interactions are affected not only by relative translational motion of the solvent and solute molecules, but also by their rotational dynamics as the interacting spins are displaced from the molecular centers; the eccentricity effects are usually not taken into account. The (1)H relaxation data have been decomposed into translational and rotational contributions and their relative importance as a function of frequency and temperature discussed in detail. It has been demonstrated that neglecting the rotational effects on the inter-molecular interactions leads to non-realistic conclusions regarding the translational dynamics of the paramagnetic molecules.  相似文献   

2.
Nitroxide free radicals are the most commonly used source for dynamic nuclear polarization (DNP) enhanced nuclear magnetic resonance (NMR) experiments and are also exclusively employed as spin labels for electron spin resonance (ESR) spectroscopy of diamagnetic molecules and materials. Nitroxide free radicals have been shown to have strong dipolar coupling to (1)H in water, and thus result in large DNP enhancement of (1)H NMR signal via the well known Overhauser effect. The fundamental parameter in a DNP experiment is the coupling factor, since it ultimately determines the maximum NMR signal enhancements which can be achieved. Despite their widespread use, measurements of the coupling factor of nitroxide free radicals have been inconsistent, and current models have failed to successfully explain our experimental data. We found that the inconsistency in determining the coupling factor arises from not taking into account the characteristics of the ESR transitions, which are split into three (or two) lines due to the hyperfine coupling of the electron to the (14)N nuclei (or (15)N) of the nitric oxide radical. Both intermolecular Heisenberg spin exchange interactions as well as intramolecular nitrogen nuclear spin relaxation mix the three (or two) ESR transitions. However, neither effect has been taken into account in any experimental studies on utilizing or quantifying the Overhauser driven DNP effects. The expected effect of Heisenberg spin exchange on Overhauser enhancements has already been theoretically predicted and observed by Bates and Drozdoski [J. Chem. Phys. 67, 4038 (1977)]. Here, we present a new model for quantifying Overhauser enhancements through nitroxide free radicals that includes both effects on mixing the ESR hyperfine states. This model predicts the maximum saturation factor to be considerably higher by the effect of nitrogen nuclear spin relaxation. Because intramolecular nitrogen spin relaxation is independent of the nitroxide concentration, this effect is still significant at low radical concentrations where electron spin exchange is negligible. This implies that the only correct way to determine the coupling factor of nitroxide free radicals is to measure the maximum enhancement at different concentrations and extrapolate the results to infinite concentration. We verify our model with a series of DNP experimental studies on (1)H NMR signal enhancement of water by means of (14)N as well as (15)N isotope enriched nitroxide radicals.  相似文献   

3.
We present an EPR study of two Gd(III) complexes in aqueous solution at multiple temperatures and EPR frequencies. These two complexes, [Gd(TPATCN)] and [Gd(DOTAM)(H(2)O)](3+), display remarkably sharp lines (i.e. slow transverse electron spin relaxation) in comparison with all complexes studied in the past, especially at X-band ( approximately 9.08 GHz). These unprecedented spectra even show, for the first time in solution, a distinct influence of hyperfine coupling to two magnetically active Gd isotopes ((155)Gd 14.8%, I = 3/2, gamma = -0.8273 x 10(7) s(-1) T(-1) and (157)Gd, 15.65%, I = 3/2, -1.0792 x 10(7) s(-1) T(-1)). The hyperfine coupling splitting in [Gd(TPATCN)] was determined accurately for a (157)Gd-enriched complex, and the value A((157)Gd)/gmu(B) = 5.67 G seems to be a good estimation for most chelates of interest. Consequently, we can safely assert that neglecting the Gd isotopes in line shape studies is not a significant source of error as long as the apparent peak-to-peak width is greater than 10-20 G. This is generally the case, except at very high EPR frequencies (>150 GHz). Analyzing the spectra within the physical model of Rast et al. we find that the slow electron spin relaxation is due to a nearly zero static ZFS. We discuss some structural features that might explain this interesting electron structure.  相似文献   

4.
Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T(1)) and spin-spin (T(2)) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multiexponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1-10) × 10(-12) s over a temperature range 230-290 K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a time scale of ~10(-13) s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential of multifrequency EPR measurements to interrogate the microscopic nature and dynamics of ultrafast electron transfer or quantum-tunneling processes in liquids. Our results also impact on the universal issue of the role of a host solvent (or host matrix, e.g. a semiconductor) in mediating long-range electron transfer processes and we discuss the implications of our results with a range of other materials and systems exhibiting the phenomenon of electron transfer.  相似文献   

5.
A high-resolution (1.16 A) X-ray structure of the nitrogenase molybdenum-iron (MoFe) protein revealed electron density from a single N, O, or C atom (denoted X) inside the central iron prismane ([6Fe]) of the [MoFe7S9:homocitrate] FeMo-cofactor (FeMo-co). We here extend earlier efforts to determine the identity of X through detailed tests of whether X = N or C by interlocking and mutually supportive 9 GHz electron spin echo envelope modulation (ESEEM) and 35 GHz electron-nuclear double resonance (ENDOR) measurements on 14/15N and 12/13C isotopomers of FeMo-co in three environments: (i) incorporated into the native MoFe protein environment; (ii) extracted into N-methyl formamide solution; and (iii) incorporated into the NifX protein, which acts as a chaperone during FeMo-co biosynthesis. These measurements provide powerful evidence that X not equal N/C, unless X in effect is magnetically decoupled from the S = 3/2 electron spin system of resting FeMo-co. They reveal no signals from FeMo-co in any of the three environments that can be assigned to X from either 14/15N or 13C: If X were either element, its maximum observed hyperfine coupling at all fields of measurement is estimated to be A(14/15NX) < 0.07/0.1 MHz, A(13CX) < 0.1 MHz, corresponding to intrinsic couplings of about half these values. In parallel, we have explicitly calculated the hyperfine tensors for X = 14/15N/13C/17O, nuclear quadrupole coupling constant e2qQ for X = 14N, and hyperfine constants for the Fe sites of S = 3/2 FeMo-co using density functional theory (DFT) in conjunction with the broken-symmetry (BS) approach for spin coupling. If X = C/N, then the decoupling required by experiment strongly supports the "BS7" spin coupling of the FeMo-co iron sites, in which a small X hyperfine coupling is the result of a precise balance of spin density contributions from three spin-up and three spin-down (3 upward arrow:3 downward arrow) iron atoms of the [6Fe] prismane "waist" of FeMo-co; this would rule out the "BS6" assignment (4 upward arrow:2 downward arrow for [6Fe]) suggested in earlier calculations. However, even with the BS7 scheme, the hyperfine couplings that would be observed for X near g2 are sufficiently large that they should have been detected: we suggest that the experimental results are compatible with X = N only if aiso(14/15NX) < 0.03-0.07/0.05-0.1 MHz and aiso(13CX) < 0.05-0.1 MHz, compared with calculated values of aiso(14/15NX) = 0.3/0.4 MHz and aiso(13CX) = 1 MHz. However, the DFT uncertainties are large enough that the very small hyperfine couplings required by experiment do not necessarily rule out X = N/C.  相似文献   

6.
The pulsed electron-electron double resonance (ELDOR) technique was employed to study nitroxide spin probes of three different sizes dissolved in glassy o-terphenyl. A microwave pulse applied to the central hyperfine structure (hfs) component of the nitroxide electron paramagnetic resonance spectrum was followed by two echo-detecting pulses of different microwave frequency to probe the magnetization transfer (MT) to the low-field hfs component. The MT between hfs components is readily related to flips in the nitrogen nuclear spin, which in turn are induced by molecular motion. The MT on the time scale of tens of microseconds was observed over a wide temperature range, including temperatures near and well below the glass transition. For a bulky nitroxide, it was found that MT rates approach dielectric α (primary) relaxation frequencies reported for o-terphenyl in the literature. For small nitroxides, MT rates were found to match the frequencies of dielectric β (secondary) Johari-Goldstein relaxation. The most probable motional mechanism inducing the nitrogen nuclear spin flips is large-angle angular jumps, between some orientations of unequal occupation probabilities. The pulsed ELDOR of nitroxide spin probes may provide additional insight into the nature of Johari-Goldstein relaxation in glassy media and may serve as a tool for studying this relaxation in substances consisting of non-rigid molecules (such as branched polymers) and in heterogeneous and non-polar systems (such as a core of biological membranes).  相似文献   

7.
Reorientation of 9-(trideuteromethyl)purine and 7-(trideuteromethyl)purine molecules in methanol-d4 solutions has been investigated on the basis of the interpretation of the nuclear spin relaxation rates of their 14N (or 1H) and 13C nuclei. The transverse quadrupole relaxation rates of 14N nuclei have been obtained from the line shape analysis of their 14N NMR spectra. Alternatively, the information on the longitudinal 14N relaxation rates has been obtained via the scalar relaxation of the second kind of protons coupled to 14N. The longitudinal dipolar relaxation rates of the protonated 13C nuclei in the investigated molecules have been determined by measuring their overall relaxation rates and NOE enhancement factors. The molecular geometries, scalar coupling constants, and EFG tensors needed for quantitative interpretation of the above data have been calculated theoretically [DFT B3LYP/6-311++G(2d,p) or B3PW91/6-311+G(df,pd)] including the impact of the solvent by using discrete solvation and the polarizable continuum model. The reorientation of the investigated purines has been described as rotational diffusion of an asymmetrical top. It has been found that to get a fully consistent interpretation of the relaxation data, effective C-H bond lengths being 3% longer than the calculated ones had to be used in analysis to compensate for the ground-state vibrations. The obtained rotational diffusion coefficients and orientations of the principal diffusion axes show that the investigated molecules reorient anisotropically and that the mode of their solvation is remarkably different, in spite of their structural similarity.  相似文献   

8.
Bodizs G  Helm L 《Inorganic chemistry》2012,51(10):5881-5888
Homoleptic acetonitrile complexes [Gd(CH(3)CN)(9)][Al(OC(CF(3))(3))(4)](3) and [Eu(CH(3)CN)(9)][Al(OC(CF(3))(3))(4)](2) have been studied in anhydrous acetonitrile by (14)N- and (1)H NMR relaxation as well as by X- and Q-band EPR. For each compound a combined analysis of all experimental data allowed to get microscopic information on the dynamics in solution. The second order rotational correlation times for [Gd(CH(3)CN)(9)](3+) and [Eu(CH(3)CN)(9)](2+) are 14.5 ± 1.8 ps and 11.8 ± 1.1 ps, respectively. Solvent exchange rate constants determined are (55 ± 15) × 10(6) s(-1) for the trivalent Gd(3+) and (1530 ± 200) × 10(6) s(-1) for the divalent Eu(2+). Surprisingly, for both solvate complexes CH(3)CN exchange is much slower for the less strongly N-binding acetonitrile than for the more strongly coordinated O-binding H(2)O. It is concluded that this exceptional behavior is due to the extremely fast water exchange, whereas the exchange behavior of CH(3)CN is more regular. Electron spin relaxation on the isoelectronic ions is much slower than on the O-binding water analogues. This allowed a precise determination of the hyperfine coupling constants for each of the two stable isotopes of Gd(3+) and Eu(2+) having a nuclear spin.  相似文献   

9.
(CH3)4NGeCl3 is prepared, characterized and studied using 1H NMR spin lattice relaxation time and second moment to understand the internal motions and quantum rotational tunneling. Proton second moment is measured at 7 MHz as function of temperature in the range 300-77 K and spin lattice relaxation time (T1) is measured at two Larmor frequencies, as a function of temperature in the range 270-17 K employing a homemade wide-line/pulsed NMR spectrometers. T1 data are analyzed in two temperature regions using relevant theoretical models. The relaxation in the higher temperatures (270-115 K) is attributed to the hindered reorientations of symmetric groups (CH3 and (CH3)4N). Broad asymmetric T1 minima observed below 115 K down to 17 K are attributed to quantum rotational tunneling of the inequivalent methyl groups.  相似文献   

10.
11.
The study of intermolecular collisions and bonding interactions in solutions is of critical importance in understanding and predicting solute/solvent properties. Previous work has established that stable paramagnetic nitroxide molecules are excellent probes of intermolecular interactions for hydrogen bonding in polar solvents. In this study, 1H, 2H, 13C, 15N NMR and liquid/liquid intermolecular transfer dynamic nuclear polarization (L2IT DNP) results are obtained for the paramagnetic probe molecule, TEMPO, interacting with the common aprotic and protic polar solvents, CH3CN and CH3CONH2, yielding a profile of both dipolar and scalar interactions. A significant scalar contact hyperfine is observed for the N-O...H-C interaction (13CH3 hyperfine, a/h=0.66 MHz) in the CH3CN/TEMPO system, whereas the N-O...H-C and N-O...H-N interactions for the TEMPO/CH3CONH2 system yield 13CH3 and 15N hyperfine couplings of a/h=0.16 and -0.50 MHz, respectively. The distance and attitude of the scalar interaction for the nitroxide hydrogen bonding at the methyl group in CH3CN and the amino group in CH3CONH2 are computed using density functional theory (DFT), yielding good agreement with the experimental results. These results show that the hyperfine coupling provides a sensitive probe of weak hydrogen-bonding interactions in solution.  相似文献   

12.
Polynitroxides with varying numbers of nitroxide groups (one to four) derived from different aromatic core structures show intramolecular electron spin-spin coupling. The scope of this study is to establish an easy methodology for extracting structural, dynamical, and thermodynamical information from the EPR spectra of these polynitroxides which might find use as spin probes in complex systems, such as biological and host/guest systems, and as polarizing agents in dynamic nuclear polarization (DNP) applications. Density functional theory (DFT) calculations at the B3LYP/6-31G(d) level provided information on the structural details such as bond lengths and angles in the gas phase, which were compared with the single crystal X-ray diffraction data in the solid state. Polarizable continuum model (PCM) calculations were performed to account for solvent influences. The electron paramagnetic resonance (EPR) spectra of the polynitroxides in chloroform were analyzed in detail to extract information such as the percentages of different conformers, hyperfine coupling constants a, and rotational correlation times τ(c). The temperature dependence on the line shape of the EPR spectra gave thermodynamic parameters ΔH and ΔS for the conformational transitions. These parameters were found to depend on the number and relative positions of the nitroxide and other polar groups.  相似文献   

13.
With limited reductant and nitrite under anaerobic conditions, copper-containing nitrite reductase (NiR) of Rhodobacter sphaeroides yielded endogenous NO and the Cu(I)NO derivative of NiR. (14)N- and (15)N-nitrite substrates gave rise to characteristic (14)NO and (15)NO EPR hyperfine features indicating NO involvement, and enrichment of NiR with (63)Cu isotope caused an EPR line shape change showing copper involvement. A markedly similar Cu(I)NONiR complex was made by anaerobically adding a little endogenous NO gas to reduced protein and immediately freezing. The Cu(I)NONiR signal accounted for 60-90% of the integrated EPR intensity formerly associated with the Type 2 catalytic copper. Analysis of NO and Cu hyperfine couplings and comparison to couplings of inorganic Cu(I)NO model systems indicated approximately 50% spin on the N of NO and approximately 17% spin on Cu. ENDOR revealed weak nitrogen hyperfine coupling to one or more likely histidine ligands of copper. Although previous crystallography of the conservative I289V mutant had shown no structural change beyond the 289 position, this mutation, which eliminates the Cdelta1 methyl of I289, caused the Cu(I)NONiR EPR spectrum to change and proton ENDOR features to be significantly altered. The proton hyperfine coupling that was significantly altered was consistent with a dipolar interaction between the Cdelta1 protons of I289 and electron spin on the NO, where the NO would be located 3.0-3.7 A from these protons. Such a distance positions the NO of Cu(I)NO as an axial ligand to Type 2 Cu(I).  相似文献   

14.
NMR spin relaxation experiments provide a powerful tool for the measurement of global and local biomolecular rotational dynamics at subnanosecond time scales. Technical limitations restrict most spin relaxation studies to biomolecules weighing less than 10 kDa, considerably smaller than the average protein molecular weight of 30 kDa. In particular, experiments measuring eta(z), the longitudinal (1)H(N)-(15)N dipole-dipole (DD)/(15)N chemical shift anisotropy (CSA) cross-correlated relaxation rate, are among those least suitable for use with larger biosystems. This is unfortunate because these experiments yield valuable insight into the variability of the (15)N CSA tensor over the polypeptide backbone, and this knowledge is critical to the correct interpretation of most (15)N-NMR backbone relaxation experiments, including R(2) and R(1). In order to remedy this situation, we present a new (1)H(N)-(15)N transverse relaxation optimized spectroscopy experiment measuring eta(z) suitable for applications with larger proteins (up to at least 30 kDa). The presented experiment also yields kappa, the site-specific rate of longitudinal (1)H(N)-(1)H(') DD cross relaxation. We describe the eta(z)/kappa experiment's performance in protonated human ubiquitin at 30.0 degrees C and in protonated calcium-saturated calmodulin/peptide complex at 20.0 degrees C, and demonstrate preliminary experimental results for a deuterated E. coli DnaK ATPase domain construct at 34 degrees C.  相似文献   

15.
We describe experimental results and theoretical models for nuclear and electron spin relaxation processes occurring during the evolution of 19F-labeled geminate radical pairs on a nanosecond time scale. In magnetic fields of over 10 T, electron-nucleus dipolar cross-relaxation and longitudinal DeltaHFC-Deltag (hyperfine coupling anisotropy--g-tensor anisotropy) cross-correlation are shown to be negligibly slow. The dominant relaxation process is transverse DeltaHFC-Deltag cross-correlation, which is shown to lead to an inversion in the geminate 19F chemically induced dynamic nuclear polarization (CIDNP) phase for sufficiently large rotational correlation times. This inversion has recently been observed experimentally and used as a probe of local mobility in partially denatured proteins (Khan, F.; et al. J. Am. Chem. Soc. 2006, 128, 10729-10737). The essential feature of the spin dynamics model employed here is the use of the complete spin state space and the complete relaxation superoperator. On the basis of the results reported, we recommend this approach for reliable treatment of magnetokinetic systems in which relaxation effects are important.  相似文献   

16.
Radicals formed by the addition of hydrogen (H) or muonium (Mu) to tris(8-hydroxyquinoline)aluminum(III) (Alq(3)) have been studied using density functional theory (DFT) calculations. Drew et al. (Phys. Rev. Lett. 2008, 100, 116601) studied Alq(3) using the longitudinal field muon spin relaxation technique and assumed the formation of muoniated radicals and rapid intermolecular electron hopping with a rate of (1.4 ± 0.2) × 10(12) s(-1). In this work, the results of DFT calculations on Alq(3), the H/Mu adducts of Alq(3), and the corresponding anions and cations are reported. The energy required to transfer an electron to or from the H/Mu adducts of Alq(3) is prohibitively large, ranging from 4.09 to 5.68 eV, which suggests that the unpaired electron does not hop onto neighboring molecules and that there is no long-range diffusion of the unpaired electron. The hyperfine coupling constants for the muoniated radicals were calculated and used to predict avoided level crossing resonance fields, which will allow experimenters to confirm that the unpaired electron is localized in close proximity to the muon.  相似文献   

17.
Stable nitroxide radicals are useful to construct molecular magnetic systems. Particularly, radicals substituted by –COOH and –CONH2 can be coordinated to magnetic metal ions and may be used as cladding reagents of gold nano-particles for modifying magnetism. Nitroxide molecules with unsaturated five-member ring have almost planner structure and electron spin delocalization may be expected. We determined the hyperfine coupling constants (hfcc) of 1H, 2H and 13C of a series of nitroxide radicals with five-member ring. Experimental values of hfcc were compared with those deduced from calculations based on density functional theory. The electron spin density distribution at β position of ring was sensitive to the ring structure, although the electron spin density at β position is small compared with N–O site. Magnetic susceptibility and UV–Vis absorption spectra were also measured and discussed.  相似文献   

18.
Electron spin resonance (ESR) measurements are highly informative on the dynamic behavior of molecules, which is of fundamental importance to understand their stability, biological functions and activities, and catalytic action. The wealth of dynamic information which can be extracted from a continuous wave electron spin resonance (cw-ESR) spectrum can be inferred by a basic theoretical approach defined within the stochastic Liouville equation formalism, i.e., the direct inclusion of motional dynamics in the form of stochastic (Fokker-Planck/diffusive) operators in the super Hamiltonian H governing the time evolution of the system. Modeling requires the characterization of magnetic parameters (e.g., hyperfine and Zeeman tensors) and the calculation of ESR observables in terms of spectral densities. The magnetic observables can be pursued by the employment of density functional theory which is apt, provided that hybrid functionals are employed, for the accurate computation of structural properties of molecular systems. Recently, an ab initio integrated computational approach to the in silico interpretation of cw-ESR spectra of multilabeled systems in isotropic fluids has been discussed. In this work we present the extension to the case of nematic liquid crystalline environments by performing simulations of the ESR spectra of the prototypical nitroxide probe 4-(hexadecanoyloxy)-2,2,6,6-tetramethylpiperidine-1-oxy in isotropic and nematic phases of 5-cyanobiphenyl. We first discuss the basic ingredients of the integrated approach, i.e., (1) determination of geometric and local magnetic parameters by quantum-mechanical calculations, taking into account the solvent and, when needed, the vibrational averaging contributions; (2) numerical solution of a stochastic Liouville equation in the presence of diffusive rotational dynamics, based on (3) parameterization of diffusion rotational tensor provided by a hydrodynamic model. Next we present simulated spectra with minimal resorting to fitting procedures, proving that the combination of sensitive ESR spectroscopy and sophisticated modeling can be highly helpful in providing three-dimensional structural and dynamic information on molecular systems in anisotropic environments.  相似文献   

19.
In this work we address the interpretation, via an ab initio integrated computational approach, of continuous wave electron spin resonance (cw-ESR) spectra of p-(methylthio)phenyl nitronylnitroxide (MTPNN) dissolved in toluene. Our approach is based on the determination of the spin Hamiltonian, averaged with respect to fast vibrational motions, with magnetic tensor parameters (Zeeman and hyperfine tensors) characterized by quantum mechanical density functional calculations. The system is then described by a stochastic Liouville equation, with inclusion of diffusive rotational dynamics. Parametrization of diffusion rotational tensor is provided by a hydrodynamic model. Cw-ESR spectra of MTPNN are simulated for a wide range of temperatures (155-292 K) with minimal resorting to fitting procedures, proving that the combination of sensitive ESR spectroscopy and sophisticated modeling can be highly helpful in providing structural and dynamic information on molecular systems.  相似文献   

20.
The isomers of the nitrogen-substituted fullerenes (azafullerenes) C19N, C59N, C69N, and C75N are examined using all-electron Gaussian atomic orbital basis density functional theory, to determine the doublet radical geometries and hyperfine coupling constants. We find that the inaccuracy of previously calculated hyperfine coupling constants of C59N resulted from a poor treatment of the geometry optimization. We find that UB3LYP minimization of the radical geometry in the 6-31G basis, followed by single-point evaluation of the hyperfine constants in which an expanded basis is used on the atomic sites of interest, forms an efficient compromise between computational cost and accuracy with respect to experimental hyperfine constants. Using this approach, we assign the hyperfine signals observed in experiments on the C69N radical by calculating the hyperfine coupling constants for all five of the isomers and examine the electron spin density distribution. Finally, we present predicted hyperfine coupling constants for the isomers of C19N and C75N for use in the interpretation of future experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号