首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
用KromasilC1 8柱 ,以甲醇 :0 .5g/L柠檬酸铵 (42 5 :5 75 )为流动相 ,在波长 2 1 5nm ,柱温 40℃下测定了食品中的安赛蜜、糖精、苯甲酸、山梨酸和咖啡因。方法RSD 0 .6 2 %~ 1 48% ,回收率 1 0 0 .7%~ 1 0 3 % ,相关系数r>0 .9998;应用于可乐、汽水、果奶等测定。  相似文献   

3.
王萍  李洁  丁晓静 《色谱》2016,34(3):327-331
建立了胶束液相色谱同时测定酱油和食醋中苯甲酸和山梨酸的检测方法。样品经过简单的稀释和过滤后直接注入高效液相色谱仪进行分析。分析柱使用两根串联的色谱保护柱(Zorbax Extend-C18 柱, 12.5 mm×4.6 mm, 5 μm),胶束流动相为含有2%(体积分数)异丙醇的0.01 mol/L十二烷基硫酸钠-0.01 mol/L醋酸钠(pH 4.9),检测器为二极管阵列检测器,检测波长为235 nm。苯甲酸和山梨酸在3.5 min内完全分离。检测的线性范围为10~100 μ g/mL,相关系数(r)为0.9999。检出限(S/N=3)和定量限(S/N=10)分别为0.04和0.14 μ g/mL。批间和批内精密度均不高于5.2%,高、中、低3个水平的加标回收率为90.5%~103.8%。该方法简单、快速,适用于食品质量监测的日常检测。  相似文献   

4.
A reversed-phase high-performance liquid chromatographic method was developed for the simultaneous determination of benzoyl peroxide and the related compounds benzoic acid (BA), methylparaben, benzaldehyde, propylparaben, and ethyl benzoate. The compounds are separated on a column containing octadecyl silane chemically bonded to porous silica particles. The mobile phase is acetonitrile-buffer (45 + 55, v/v). Solutions are injected into the chromatographic system under isocratic conditions at a constant flow rate of 1.5 mL/min with UV detection at 235 nm. Analysis of stability samples showed rapid accumulation of BA by thermal degradation. A rationale has been established for the acceptable limit of BA in the formulation, which already contains BA (0.2%) as a preservative. The proposed method is efficient and determines the active compound and 5 related compounds in a run time of 20 min. The method was validated according to the guidelines of the International Conference on Harmonization and demonstrated good agreement with the validation requirements.  相似文献   

5.
A new, simple and sensitive pre-column high-performance chromatographic method for the determination of diabetes marker d-glucose, 1,5-anhydro-d-glucitol and related compounds is reported. Sugars (d-glucose, d-galactose, d-mannose, sucrose and arabinose) were derivatized with benzoic acid (BA) at 80 degrees C for 60 min. l-Fucose, fructose, d-lactose, l-rhamnose, arabinose and ascorbic acid were not reacted. Sugar alcohols (xylitol, erythritol, mannitol, sorbitol myo-inositol) were also derivatized with BA at 80 degrees C for 60 min. The fluorescence derivatives were separated on a TSK amide 80 column (4.6 mm i.d. x 250 mm, 5 microm) with acetonitrile-50 mm acetate buffer (pH 5.6; 4:96, v/v) as the mobile phase. The detection wavelength of beizoic acid derivatives was lambda(ex) 275 nm and lambda(em) 315 nm. The detection limits of sugars were 10-80 microg/mL. The calibration graphs were linear up to 10 mg/mL. The relative standard deviations of 500 microg/mL sugars were 7.0-7.3%. The proposed method was compared with the enzymatic photometric glucose analysis method (Glucose B-Test II Wako). The correlation coefficient was 0.83 (n = 20) and y = 0.82x + 5.91, where y and x are concentrations in microg/mL obtained by the proposed pre-column HPLC and enzyme-photometric method, respectively. The detection limits of sugar alcohols were 100-1000 ng/mL. The calibration graphs were linear to 50 microg/mL and relative standard deviations of 10 microg/mL were 7.2-8.2%. The 1,5-AG data by the proposed method was also compared with the enzymatic photometric 1,5-AG analysis method (Rana AG 1,5-AG determination kit, Nihon Kayaku) and good correlation (r = 0.91, n = 20) was also obtained. The proposed method was applied to the simultaneous determination of d-glucose, 1,5-AG and related sugar alcohols in serum from healthy males.  相似文献   

6.
HPLC method for quantitative determination of four preservatives and nine UV filters worldwide authorized in commercial suncare product was developed and validated, and then 101 samples of commercial suncare products were analyzed for the UV filters and preservatives using the proposed method. The mobile phase was acetonitrile-water containing 0.5% acetic acid using a gradient elution at a flow rate of 0.9 mL/min and UV measurements were carried out at 320 nm for UV filters and 254 nm for preservatives. The correlation coefficients of each calibration curves were mostly higher than 0.999. The percent relative standard deviations (%RSD) ranged from 0.97% to 6.1% for five sample aliquots. The recoveries from the spiked solutions were 98-102%. 2-ethylhexyl-p-methoxycinnamate (EHMC) was detected in 96 of 101 commercial suncare products and the concentration was in the range of 3.08-8.16% and 18 samples were found to exceed the 7.5% which has been defined as the maximum allowed concentration in Korea. Methyl paraben was detected in 81 of 101 samples and the next-most often detected preservatives were propyl paraben (25), ethyl paraben (18), and butyl paraben (4). Three samples of 101 suncare products exceeded the maximum allowed concentration (i.e., 0.58-0.79%). The proposed HPLC method allows efficient and simultaneous analysis of preservatives and UV filters suitable for quality control assays of commercial suncare products.  相似文献   

7.
A simple, rapid and sensitive on-line method for the simultaneous determination of benzoic and sorbic acids in food was developed by coupling in-tube solid-phase microextraction (SPME) to high-performance liquid chromatography (HPLC) with UV detection. The diethylamine-modified poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolithic capillary selected as the extraction medium exhibited a high extraction capability towards benzoic and sorbic acids. To obtain optimum extraction performance, several in-tube SPME parameters were investigated, including pH value, inorganic salt, and the organic solvent content of the sample matrix. After simple dilution with 0.02 mol/L phosphate solution (pH 4.0), carbonated drink, juice drink, sauce and jam samples could be directly injected for extraction. For succade samples, a small amount of acetonitrile was required to extract analytes prior to dilution and subsequent extraction. The linearity of the method was investigated over a concentration range of 5–20000 ng/mL for both analytes, and the correlation coefficients (R 2 values) were higher than 0.999. The detection limits for benzoic and sorbic acids were 1.2 and 0.9 ng/mL, respectively. The method reproducibility was tested by evaluating the intra- and interday precisions; relative standard deviations of less than 4.4 and 9.9%, respectively, were obtained. Recoveries of compounds from spiked food samples ranged from 84.4 to 106%. The developed method was shown to be suitable for the routine monitoring of benzoic and sorbic acids in various types of food samples.  相似文献   

8.
A new method to determine a mixture for preserving sorbic and benzoic acids in commercial juices is proposed. The PLS-2 model was obtained preparing 40 standard solutions adding concentration of sorbic and benzoic acid to filtered natural juices of apple, lemon, orange and grapefruit. The concentration of analytes in the commercial samples was evaluated using the obtained model by UV spectral data. The PLS-2 method was validated by high performance liquid chromatography (HPLC), finding a relative error less than 12% between the PLS-2 and HPLC methods in all cases.  相似文献   

9.
Herba Epimedii (family Berberidaceae), Yinyanghuo in Chinese, is one of the commonly used Chinese medicines. Flavonoids are considered as its active components. In this study, a reliable pressurized liquid extraction (PLE) and HPLC method was developed for simultaneous determination of 15 flavonoids, namely hexandraside E, kaempferol-3-O-rhamnoside, hexandraside F, epimedin A, epimedin B, epimedin C, icariin, epimedoside C, baohuoside II, caohuoside C, baohuoside VII, sagittatoside A, sagittatoside B, 2'-O-rhamnosyl icariside II and baohuoside I in different species of Epimedium. The analysis was performed by using a Zorbax SB-C18 analytical column (250 mm x 4.6 mm I.D., 5 microm) at gradient elution of water and acetonitrile with diode-array detection (270 nm). All calibration curves showed good linearity (r(2)>0.9997) within test ranges. The LOD and LOQ were lower than 1.31 ng and 2.62 ng on column, respectively. The RSD for intra- and inter-day of 15 analytes was less than 3.8% at three levels, and the recoveries were 90.5-106.8%. The validated method was successfully applied for the analysis of 15 flavonoids in different species of Epimedium which had great variation on the contents of investigated flavonoids. Hierarchical clustering analysis based on the characteristics of 15 investigated compound peaks in HPLC profiles showed that 26 samples were divided into three main clusters, which were in accordance with their flavonoid contents. Four flavonoids including epimedin A, B, C and icariin were optimized as markers for quality control of the species of Epimedium used as Yinyanghuo.  相似文献   

10.
HPLC stability-indicating method has been developed for the simultaneous determination of some water-soluble vitamins (ascorbic acid, thiamine hydrochloride, riboflavin-5'-phosphate sodium, pyridoxine hydrochloride, nicotinamide, D(+)-panthenol) and two preservatives (methylparaben and sodium benzoate) in multivitamin syrup preparation. Water-soluble vitamins, preservatives and their degradants were separated on Zorbax SB-Aq (C(18)) (250 mm x 4.6 mm, 5 microm) column at an ambient temperature. Combined isocratic and gradient elution was performed with a mobile phase consisting of 0.0125 M hexane-1-sulfonic acid sodium salt in 0.1% (m/v) o-phosphoric acid, pH 2.4-2.5 (solvent A) and acetonitrile (solvent B) at the flow-rate 1 ml min(-1). Starting with solvent A an isocratic elution was performed for 15 min, then the composition was changed to 85% of A and 15% of B during the next 20 min and it was constant for 5 min, then the composition was changed to 70% of A and 30% of B during next 15 min and it was constant for 5 min and finally was changed to 100% of A as at the beginning of the elution. Detection was performed with diode array detector at 210, 230 and 254 nm. Multivitamin syrup preparation was subjected to stress testing (forced degradation) in order to demonstrate that degradants from the vitamins, preservatives and/or product excipients do not interfere with the quantification of vitamins and preservatives. Typical validation characteristics: selectivity, accuracy, precision, linearity, range, limit of quantification and limit of detection were evaluated for vitamins and preservatives.  相似文献   

11.
12.
Summary A paired-ion, reversed-phase high-performance liquid chromatographic method was developed for the simultaneous determination of sweeteners (dulcin, saccharin-Na and acesulfame-K), preservatives (sodium dehydroacetate, sorbic acid, salicyclic acid, benzoic acid, succinic acid, methyl-para-hydroxybenzoic acid, ethylpara-hydroxybenzoic acid, n-propyl-para-hydroxybenzoic acid, isopropyl-para-hydroxybenzoic acid, n-butyl-para-hydroxybenzoic acid, and isobutyl-para-hydroxybenzoic acid), and antioxidants (3-tertiary-butyl-4-hydroxyanisole and tertiary-butyl-hydroquinone). A mobile phase of acetonitrile-50 mM aqueous -hydroxy-isobutyric acid solution (pH 4.5) (2.2 3.4 or 2.4 3.6, v/v) containing 2.5 mM hexadecyltrimethylammonium bromide and a C18 column with a flow rate at 1.0 mL/min and detection at 233 nm were used. This method was found to be very reproducible with detection limits ranged from 0.15 to 3.00 g. The retention factor (k) of each additive could be affected by concentrations of hexadecyltrimethylammonium bromide and -hydroxyisobutyric acid, and pH and ratio of mobile phase. The presence of additives in some food samples was determined.  相似文献   

13.
14.
Summary A paired-ion, reversed-phase high-performance liquid chromatographic method was developed for the simultaneous determination of sweeteners (dulcin, saccharin-Na and acesulfame-K), preservatives (sodium dehydroacetate, sorbic acid, salicyclic acid, benzoic acid, succinic acid, methyl-para-hydroxybenzoic acid, ethyl-para-hydroxybenzoic acid, n-propyl-para-hydroxybenzoic acid, isopropyl-para-hydroxybenzoic acid, n-butyl-para-hydroxybenzoic acid, and isobutyl-para-hydroxybenzoic acid), and antioxidants (3-tertiary-butyl-4-hydroxyanisole and tertiary-butyl-hydroquinone). A mobile phase of acetonitrile-50 mM aqueous α-hydroxyisobutyric acid solution (pH 4.5) (2.2 : 3.4 or 2.4 : 3.6, v/v) containing 2.5 mM hexadecyltrimethylammonium bromide and a C18 column with a flow rate at 1.0 mL/min and detection at 233 nm were used. This method was found to be very reproducible with detection limits ranged from 0.15 to 3.00 μg. The retention factor (k) of each additive could be affected by concentrations of hexadecyltrimethylammonium bromide and α-hydroxyisobutyric acid, and pH and ratio of mobile phase. The presence of additives in some food samples was determined.  相似文献   

15.
Inulin and p-aminohippuric acid (PAH) clearances are used for the estimation of glomerular filtration rate (GFR) and effective renal plasma flow (ERPF). A simple and rapid high-performance liquid chromatography (HPLC) method with UV detection is described for the simultaneous determination of inulin and PAH in the same chromatogram in the plasma and urine of humans. Plasma and urine samples were hydrolyzed with perchloric acid (0.7%) in boiling water. The mobile phase consisted of 0.01 M potassium dihydrogenphosphate with 0.02 M tetramethylammonium chloride and o-phosphoric acid (pH 3)-acetonitrile (94:6, v/v), pumped at a rate of 1.2 ml min-1 on a C8 reversed-phase column. Tannic acid was used as the internal standard and UV detection at 285 nm was employed. The calibration curves were linear over the concentration range of 12.5-100 mg l-1 for inulin and 6.25-50 mg l-1 for PAH with determination coefficients greater than 0.997. The method is accurate (bias < 13%) and reproducible (intra- and inter-day relative standard deviation less than 11%), with a limit of quantitation of 12.5 mg l-1 and 6.25 mg l-1 for inulin and PAH, respectively. Analytical recoveries from urine and plasma were ranged from 81 to 108% for both compounds. This fully validated method, which allows the simultaneous determination of inulin and PAH clearances, is simple, rapid (total run time < 10 min) and requires only a 200 microliters plasma or urine sample.  相似文献   

16.
A method has been developed for the simultaneous determination of Tranilast, N-(3',4'-dimethoxycinnamoyl)anthranilic acid (N-5'), and metabolites in plasma and urine from humans, dogs and rodents administered N-5'. Total N-5' and metabolite N-3 conjugates were determined in human urine. Detection limits in plasma were 0.2 micrograms/ml for metabolite N-3-S and N-5' and 0.1 micrograms/ml for metabolites N-3 and N-4. In urine, detection limits were 2 micrograms/ml for metabolite N-3-S and N-5' and 1 micrograms/ml for metabolites N-3 and N-4. Metabolite N-4 was not identified in any sample assayed.  相似文献   

17.
Current knowledge of stereoselective pharmacokinetics and different potencies of drug enantiomers requires the performance of stereoselective analysis during therapeutic drug monitoring in clinical practice. However, in the case of the new antidepressant drug reboxetine, no effort has been made so far to find a such a suitable system. Therefore, as a step towards developing an enantioselective bioanalytical method for reboxetine and the O-desethylreboxetine metabolite, three stereoselective chromatographic approaches have been investigated. Several chiral columns were tested, among them Chiral-AGP, ChiraGrom 2 and Chiral-CBH, which were able to simultaneously separate the two compounds into enantiomers in total running times of 28, 18 and 12 min, respectively.  相似文献   

18.
A facile headspace solid-phase microextraction (HS-SPME) procedure using 85 microm polyacrylate (PA) fiber is presented for the simultaneous determination of preservatives (sorbic and benzoic acids) in food dressing, including Thousand Island Dressing, HellMANN'S Salad Dressing and Tomato Ketchup, by gas chromatography (GC) with flame ionization detector (FID). The method presented preserves the advantages typical of HS-SPME such as simplicity, low intensity of labor, low cost and solvent free. The main factors affecting the HS-SPME process, such as extraction temperature and time, desorption temperature and time, the acidity and salt concentration of the solution, were optimized. Limits of detection (LODs) of the method were 2.00 microg/L for sorbic acid and 1.22 microg/L for benzoic acid. Relative standard deviations (RSDs) for quintuplicate analyses at three concentration levels of 0.10, 2.0 and 20 mg/L ranged between 3.86 and 14.8%. The method also showed good linearity n a range from 0.02 to 40 mg/L with correlation coefficients (R2) of 0.9986 for sorbic acid and 0.9994 for benzoic acid. Recoveries for the two analytes in all the samples tested ranged from 83.44 to 113.2%. Practical applicability was demonstrated through the simultaneous determination of sorbic and benzoic acids in the three complex samples.  相似文献   

19.
A reversed-phase high-performance liquid chromatographic method is developed for the quantitative determination of seven components of Snow Lotus Herb (Saussurea tridactyla Sch.-Bip.ex Hook.f.): umbelliferonglucoside, luteolin-7-O-beta-D-glucoside, rutin, apigenin-7-O-beta-D-glucoside, kaempferol-3-O-beta-D-glucoside, apigenin-7-O-beta-D-rutinoside, and luteolin. Samples are analyzed by means of a reverse-phase column (Diamonsil C(18)) using methanol and water under gradient conditions as the mobile phase for 60 min. This method offers selectivity, accuracy, precision, linearity, and ruggedness, as well as efficiency and ease.  相似文献   

20.
This work relates the development of an analytical methodology to simultaneously determine three methylxanthines (caffeine, theobromine, and theophylline) in beverages and urine samples based on reversed-phase high-performance liquid chromatography. Separation is made with a Bondesil C18 column using methanol-water-acetic acid or ethanol-water-acetic acid (20:75:5, v/v/v) as the mobile phase at 0.7 mL/min. Identification is made by absorbance detection at 273 nm. Under optimized conditions, the detection limit of the HPLC method is 0.1 pg/mL for all three methylxanthines. This method is applied to urine and to 25 different beverage samples, which included coffee, tea, chocolate, and coconut water. The concentration ranges determined in the beverages and urine are: < 0.1 pg/mL to 350 microg/mL and 3.21 microg/mL to 71.2 microg/mL for caffeine; < 0.1 pg/mL to 32 microg mL and < 0.1 pg/mL to 13.2 microg/mL for theobromine; < 0.1 pg/mL to 47 microg/mL and < 0.1 pg/mL to 66.3 microg/mL for theophylline. The method proposed in this study is rapid and suitable for the simultaneous quantitation of methylxanthines in beverages and human urine samples and requires no extraction step or derivatization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号