首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic interfacial tension between aqueous solutions of 3-dodecyloxy-2-hydroxypropyl trimethyl ammonium bromide (R12HTAB) and n-hexane were measured using the spinning drop method. The effects of the R12HTAB concentration (the concentration below the CMC) and temperature on the dynamic interfacial tension have been investigated; the reason of the change of dynamic interfacial tension with time has been discussed. The effective diffusion coefficient, Da, and the adsorption barrier, a, have been obtained from the experimental data using the extended Word–Tordai equation. The results show that the dynamic interfacial tension becomes smaller while a becomes higher with increasing R12HTAB concentration in the bulk aqueous phase. Da decreases from 5.56 × 10−12 m−2 s−1 to 0.87 × 10−12 m−2 s−1 while a increases from 5.41 kJ mol−1 to 7.74 kJ mol−1 with the increase of concentration in the bulk solution of R12HTAB from 0.5 × 10−3 mol dm−3 to 4 × 10−3 mol dm−3. Change of temperature affects the adsorption rate through altering Da and a. The value of Da increases from 5.56 × 10−12 m−2 s−1 to 13.98 × 10−12 m−2 s−1 while that of a decreases from 5.41 kJ mol−1 to 5.07 kJ mol−1 with temperature ascending from 303 K to 323 K. The adsorption of surfactant from the bulk phase into the interface follows a mixed diffusion–activation mechanism, which has been discussed in the light of interaction between surfactant molecules, diffusion and thermo-motion of molecules.  相似文献   

2.
The kinetics of phenylalanine (phe) oxidation by permanganate has been investigated in absence and presence of cetlytrimethylammonium bromide (CTAB) using conventional spectrophotometric technique. The rate shows first- and fractional-order dependence on [MnO4] and [phe] in presence of CTAB. At lower values of [CTAB] (≤10.0 × 10−4 mol dm−3), the catalytic ability of CTAB aggregates are strong. In contrast, at higher values of [CTAB] (≥10.0 × 10−4 mol dm−3), the inhibitory effect was observed in absence of H2SO4. We find that anions (Br, Cl and NO3) in the form of sodium salts are strong inhibitors for the CTAB catalyzed oxidation. Kinetic and spectrophotometric evidences for the formation of an intermediate complex and an ion-pair complex between phe and MnO4, CTAB and MnO4, respectively, are presented. A mechanism consistent with kinetic results has been discussed. Complex formation constant (Kc) and micellar binding constant (Ks) were calculated at 30 °C and found to be Kc = 319 mol−1 dm−3 and Ks = 1127 mol−1 dm−3, respectively.  相似文献   

3.
The mediated oxidation of N-acetyl cysteine (NAC) and glutathione (GL) at the palladized aluminum electrode modified by Prussian blue film (PB/Pd–Al) is described. The catalytic activity of PB/Pd–Al was explored in terms of FeIII[FeIII(CN)6]/FeIII[FeII(CN)6]1− system by taking advantage of the metallic palladium layer inserted between PB film and Al, as an electron-transfer bridge. The best mediated oxidation of NAC and GL on the PB/Pd–Al electrode was achieved in 0.5 M KNO3 + 0.2 M potassium acetate of pH 2. The mechanism and kinetics of the catalytic oxidation reactions of the both compounds were monitored by cyclic voltammetry and chronoamperometry. The charge transfer-rate limiting step as well as overall oxidation reaction of NAC or GL is found to be a one-electron abstraction. The values of transfer coefficients α, catalytic rate constant k and diffusion coefficient D are 0.5, 3.2 × 102 M−1 s−1 and 2.45 × 10−5 cm2 s−1 for NAC and 0.5, 2.1 × 102 M−1 s−1 and 3.7 × 10−5 cm2 s−1 for GL, respectively. The modifying layers on the Pd–Al substrate have reproducible behavior and a high level of stability in the electrolyte solutions. The modified electrode is exploited for hydrodynamic amperometry of NAC and GL. The amperometric calibration graph is linear in concentration ranges 2 × 10−6–40 × 10−6 for NAC and 5 × 10−7–18 × 10−6 M for GL and the detection limits are 5.4 × 10−7 and 4.6 × 10−7 M, respectively.  相似文献   

4.
A detailed study of the electrochemical reduction of diacetylbenzene A in aqueous medium between Ho = −5 and pH 14 is presented. The reactants are strongly adsorbed, so that the reactions are of a surface nature. From Ho = −5 to pH 6, a global 2e reduction yielding an enediol-type intermediate occurs. Analysis using the theory of the square schemes with protonations at equilibrium shows that, up to pH 4, the reaction is controlled by the first electron uptake, the paths being successively H+e and eH+. The elementary electrochemical surface rate constants are 9.6 × 107 s and 1.2 × 106 s for AH+ and A respectively. From pH 6 to 14, a le adsorption wave, corresponding to the formation of (a) monoradical(s), appears and is followed by a le wave due to the reduction of the radical(s). A dimerization occurs, due to the coupling A + AH, as in the case of the monocarbonyl compounds. The rate of this surface process, kd = 5 × 1013 cm2 mol−1 s−1, is markedly smaller than the rate of the homogeneous reaction obtained in alkaline ethanol by Savéant et al. for the coupling of the radicals of benzaldehyde, benzophenone and acetophenone.  相似文献   

5.
Previously unreported bis(oxalato)borate (BOB) ionic liquids (ILs) containing imidazolium, pyridinium, and pyrrolidinium cations were prepared from the corresponding halide salts by reaction with sodium bis(oxalato)borate (NaBOB), and their properties are reported. Pulse radiolysis experiments revealed that the BOB anion scavenges solvated electrons with rate constants of 3×108 M−1 s−1 in the ionic liquid C4mpyrr NTf2 and 2.8×107 M−1 s−1 in water. This reactivity indicates that BOB ILs may be too sensitive to be used as neat solvents for nuclear separations processes in high radiation fields but may still be useful for preventing criticality while processing relatively “cold” fissile actinides.  相似文献   

6.
Recombination rate coefficients of protonated and deuterated ions KrH+, KrD+, XeH+ and XeD+ were measured using Flowing Afterglow with Langmuir Probe (FALP). Helium at 1600 Pa and at temperature 250 K was used as a buffer gas in the experiments. Kr, Xe, H2 and D2 were introduced to a flow tube to form the desired ions. Because of small differences in proton affinities of Kr, D2 and H2 mixtures of ions, KrD+/D3+ and KrH+/H3+ are formed in the afterglow plasma, influencing the plasma decay. To obtain a recombination rate coefficient for a particular ion, the dependencies on partial pressures of gases used in the ion formation were measured. The obtained rate coefficients, αKrD+(250 K) = (0.9 ± 0.3) × 10−8 cm3 s−1 and αXeD+(250 K) = (8 ± 2) × 10−8 cm3 s−1 are compared with αKrH+(250 K) = (2.0 ± 0.6) × 10−8 cm3 s−1 and αXeH+(250 K) = (8 ± 2) × 10−8 cm3 s−1.  相似文献   

7.
Degradation of polyoxyethylene chain of non-ionic surfactant (TritonX-100) by chromium(VI) has been studied spectrophotometrically under different experimental conditions. The reaction rate bears a first-order dependence on the [Cr(VI)] under pseudo-first-order conditions, [TritonX-100]  [Cr(VI)] in presence of 1.16 mol dm−3 perchloric acid. The observed rate constant (kobs) was 3.3 × 10−4 to 3.5 × 10−4 s−1 and the half-life (t1/2) was 33–35 min for chromium(VI). The effects of total [TritonX-100] and [H+] on the reaction rate were determined. Reducing nature of non-ionic TritonX-100 surfactant is found to be due to the presence of –OH group in the polyoxyethylene chain. It was observed that monomeric and non-ionic micelles of TritonX-100 were oxidized by chromium(VI). When [TritonX-100] was less than its critical micelle concentration (cmc) the kobs values increased from 0.76 × 10−4 to 1.5 × 10−4 s−1. As the [TritonX-100] was greater than the cmc, the kobs values increases from 2.1 × 10−4 to 8.2 × 10−4 s−1 in presence of constant [HClO4] (1.16 mol dm−3) at 40 °C. A comparison was made of the oxidative degradation rates of TritonX-100 with different metal ion oxidants. The order of the effectiveness of different oxidants was as follows: permanganate > diperiodatoargentate(III) > chromium(VI) > cerium(IV).  相似文献   

8.
The preparation and electrochemical characterization of a carbon paste electrode modified with copper(II) hexacyanoferrate(III) (CuHCF) as well as its behavior as electrocatalyst toward the oxidation of N-acetylcysteine were investigated. The electrochemical behavior of the modified electrode and the electrooxidation of N-acetylcysteine were explored using sweep linear voltammetry. The best voltammetric response was observed for a paste composition of 20% (w/w) copper(II) hexacyanoferrate(III) complex, acetate buffer solution at pH of 6.0 as the electrolyte and scan rate of 10 mV s− 1. A linear voltammetric response for N-acetylcysteine was obtained in the concentration range from 1.2 × 10− 4 to 8.3 × 10− 4 mol L− 1, with a detection limit of 6.3 × 10− 5 mol L− 1. The proposed electrode is useful for the quality control and routine analysis of N-acetylcysteine in pharmaceutical formulations.  相似文献   

9.
Recombination of HCO+ and DCO+ ions with electrons was studied in afterglow plasma. The flowing afterglow with Langmuir probe (FALP) apparatus was used to measure the recombination rate coefficients and their temperature dependencies in the range 150–270 K. To obtain a recombination rate coefficient for a particular ion, the dependencies on partial pressures of gases used in the ion formation were measured. The variations of αHCO+(T) and αDCO+(T) seem to obey the power law: αHCO+(T) = (2.0 ± 0.6) × 10−7 (T/300)−1.3 cm3 s−1 and αDCO+(T) = (1.7 ± 0.5) × 10−7 (T/300)−1.1 cm3 s−1 over the studied temperature range.  相似文献   

10.
Four short- and long-alkyl-multiamine ligands L1–L4 have been synthesized and characterized. The catalytic efficiency of complex CuL1 and functional metallomicelles CuL2–CuL4 were comparatively investigated for the hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) in buffered solution at 30 °C. The ternary kinetic model for metallomicellar catalysis was suggested to analyze the experimental data. The kinetic and thermodynamic parameters kN, KT and pKa were obtained. The results indicated that the complexes with 1:1 ratio of ligands L2–L4 to copper(II) ion were the kinetic active catalysts, and the deprotonized Cu(II) complex formed by activated water molecule was the real active species for BNPP catalytic hydrolysis. The real rate constant of the reaction catalyzed by CuL1–CuL4 was 4.00 × 10−6, 7.44 × 10−5, 1.42 × 10−4 and 4.10 × 10−4 s−1, respectively. The effects of ligand and microenvironment on the hydrolytic reaction of BNPP have been discussed in detail.  相似文献   

11.
A rapid, simple and sensitive spectrofluorimetric method for determination of trace amount of bromazepam is developed. In phosphate buffer of pH 7.4. The bromazepam enhance the luminescence intensity of the Eu3+ ion in Eu3+–bromazepam complex at λex = 390 nm. The produced luminescence intensity of Eu3+–bromazepam complex is in proportion to the concentration of bromazepam. The working range for the determination of bromazepam is 2.3 × 10−8 to 6.2 × 10−7 M with detection limit (LoD) and quantitative detection limit (LoQ) of 3 × 10−9 and 1.2 × 10−8 M, respectively. While, the working range, detection limit (LoD) and quantitative detection limit (LoQ) in case of the quantum yield calculations are 3.7 × 10−8 to 3.4 × 10−7 M with of 3.4 × 10−9 and 9.2 × 10−8 M, respectively. The enhancement mechanism of the luminescence intensity in the Eu3+–bromazepam system has been also explained.  相似文献   

12.
Positron lifetime measurements were performed on a series of organic electron acceptors and charge-transfer complexes in solution. The acceptors cause both positronium (Ps) inhibition (with maybe one exception) and quenching, but when an acceptor takes part in a charge-transfer complex the inhibition intensifies and the quenching almost vanishes. The reaction constants between ortho-Ps and the acceptors were determinded to be: 1.5 × 1010 M−1 s−1 for SO2 in dioxane 3.7 × 1010 M−1 s−1 for SO2 in n-heptane, 3.4 × 1010 M−1 s−1 for tetracyanoquinodimethane in tetrahydrofurane and 1.6 × 1010 M−1 s−1 for tetracyanoethylene in dioxane. From the ortho-Ps lifetimes in solutions containing charge-transfer complexes complexity constants were determined that were in reasonable agreement with constants obtained from optical data. The influence of acceptors and charge-transfers complexes on the Ps yield was interpreted in terms of the spur reaction model of Ps formation. Correlation was also made to gas phase reaction between electron acceptors and free electron, as well as to pulse radiolysis data.  相似文献   

13.
Yu F  Ding Y  Gao Y  Zheng S  Chen F 《Analytica chimica acta》2008,625(2):195-200
A new spectrofluorimetric method was developed for the determination of trace amounts of DNA using the calcein as a fluorescent probe. In the presence of appropriate amounts of the cationic surfactant cetyl trimethyl ammonium bromide (CTAB), the anionic dye calcein dimerizes. The weak fluorescence intensity of the dimer was enhanced by adding DNA at pH 6–7. The interaction between calcein–CTAB and DNA was studied on the basis of this behavior and a new method was developed for determining DNA. Under the optimal conditions, the enhanced fluorescence intensity was in proportion to the concentration of DNA in the range of 4.0 × 10−6 to 8.0 × 10−5 g L−1 for fsDNA and thermally denatured ctDNA (4.5 × 10−6 to 9.0 × 10−5 g L−1). The detection limits (S/N = 3) were 2.0 × 10−6 and 2.2 × 10−6 g L−1, respectively. This method was used for determining the concentration of DNA in synthetic samples with satisfactory results.  相似文献   

14.
A novel hybrid bifunctional sensing platform for simultaneous determination of NO and O2 has been developed, whereby hematite nanotubes are immobilized into the chitosan matrix onto a gold electrode (labeled as HeNTs-Chi/Au). The HeNTs distributed in porous-structured chitosan matrix not only offer abundant active sites for bifunctional sensing of NO and O2, but also facilitate oxidation of NO and reduction of O2 dramatically. Straight calibration curves are achieved in analyte concentration ranges of 5.0 × 10−8 to 1.25 × 10−6 mol L−1 for NO and 2.5 × 10−7 to 6.0 × 10−6 mol L−1 for O2. Also, the detection limits are low of 8.0 × 10−9 mol L−1 for NO and 5.0 × 10−8 mol L−1 for O2. Such an efficient bifunctional sensor for NO and O2 offers great potential in quantitation of NO levels in biological and medical systems, since NO level is highly regulated by various reactive oxygen species.  相似文献   

15.
Room temperature rate coefficients and product distributions are reported for the reactions initiated in D2O with dications of the alkaline-earth metals Mg, Ca, Sr and Ba. The measurements were performed with a selected-ion flow tube (SIFT) tandem mass spectrometer and electrospray ionization (ESI). Mg2+ reacts with water by a fast electron transfer leading to charge separation with a rate coefficient of 1.4 × 10−9 cm3 molecule−1 s−1. Ca2+ reacts with D2O in a first step to form the adduct Ca2+(D2O), with an effective bimolecular rate coefficient of 2.3 × 10−11 cm3 molecule−1 s−1, which then undergoes rapid charge separation by deuteron transfer to form CaOD+ and D3O+ in a second step with k = 7.9 × 10−10 cm3 molecule−1 s−1. The CaOD+ ion reacts further by clustering up to five more D2O molecules. Sr2+ clusters up to eight D2O molecules and Ba2+ up to seven D2O molecules, with the first addition of D2O being rate determining in each case and the last addition being distinctly slower, as might be expected from a transition in the occupation of the added water molecules from an inner to an outer hydration shell.  相似文献   

16.
Fluorescein (HFin) emitted strong and stable room temperature phosphorescence (RTP) on filter paper after set at 50 °C for 10 min using Li+ as the ion perturber. HFin existed as Fin when the pH value was in the range of 5.45–7.36. Fin could react with [Cu(BPY)2]2+ (BPY: α,α-bipyridyl) to produce ion association complex [Cu(BPY)2]2+·[(Fin)2]2−, which could enhance the RTP signal of Hfin. In the presence of bovine serum albumin (BSA), the –COOH group of Fin in the [Cu(BPY)2]2+·[(Fin)2]2− could react with the –NH2 group of BSA to form the ion association complex [Cu(BPY)2]2+·[(Fin-BSA)2]2−, which contained –CO–NH– bond. This complex could sharply enhance the RTP signal of Hfin and the ΔIp was directly proportional to the content of BSA. According to the facts above, a new solid substrate-room temperature phosphorimetry (SS-RTP) for the determination of trace protein had been established using the ion association complex [Cu(BPY)2]2+·[(Fin)2]2−as a phosphorescent probe. This method had wide linear range (0.40 × 10−9–280 × 10−9 mg l−1), high sensitivity (the detection limit (LD) was 1.4 × 10−10 mg l−1), good precision (RSD: 3.4–4.9%) and high selectivity (the allowed concentration of coexistent ions or coexistent materials was high). It had been applied to the determination of the content of protein in 10 kinds of real samples, and the result agreed well with pyrocatechol violet-Mo (VI) method (P.V.M.M.), which indicated it had high accuracy. Meanwhile, reaction mechanism for the determination of trace protein with [Cu(BPY)2]2+·[(Fin)2]2− phosphorescent probe was also discussed. The academic thought of this research could not only be used to develop many kinds of ion association complex phosphorescent probes, but also provided a new way to promote the sensitivity of SS-RTP.  相似文献   

17.
The radical pair dynamics in a photochemical hydrogen abstraction reaction of 2-methyl-1,4-naphthoquinone in a sodium dodecylsulfate micelle was modulated by a microwave pulse. After a short resonant 180° microwave pulse, the recombination of the radical pair was enhanced, its rate constant being determined to be (8.3±0.8)×106 s−1. Other kinetic parameters were determined by the scanning of the microwave pulse position as follows: the formation of the radical pair (3.3±0.3)×107 s−1, the relaxation rate from the triplet (T±1) levels to the singlet–triplet (T0) mixed one (3.3±0.3)×105 s−1 at 331 mT, and the radical escape rate (5.8±0.6)×105 s−1.  相似文献   

18.
The α-tocopheroxyl radical was generated voltammetrically by one-electron oxidation of the α-tocopherol anion (r1/2=−0.73 V versus Ag|Ag+) that was prepared by reacting α-tocopherol with Et4NOH in acetonitrile (with Bu4NPF6 as the supporting electrolyte). Cyclic voltammograms recorded at variable scan rates (0.05–10 V s−1), temperatures (−20 to 20°C) and concentrations (0.5–10 mM) were modelled using digital simulation techniques to determine the rate of bimolecular self-reaction of α-tocopheroxyl radicals. The k values were calculated to be 3×103 l mol−1 s−1 at 20°C, 2×103 l mol−1 s−1 at 0°C and 1.2×103 l mol−1 s−1 at −20°C. In situ electrochemical-EPR experiments performed at a channel electrode confirmed the existence of the α-tocopheroxyl radical.  相似文献   

19.
A new, rapid, sensitive, non-extraction batch, and flow injection spectrophotometric method for the determination of cationic surfactants (CSs) such as cetyltrimethyl ammonium bromide (CTAB), tetra-n-butyl ammonium chloride (TBAC) and cetylpyridinium chloride (CPC) is proposed. The method is based on the interaction of cationic surfactants with eriochrome black-T to form an ion-association complex. This complex has strong absorbance at 708 nm. The effects of chemical parameters and FIA variables on the determination of cationic surfactants were studied in detail, especially for CTAB. Under optimum conditions, the two linear calibration ranges of the method are 3.0 × 10−6 to 5.0 × 10−3 mol L−1 CTAB, CPB and DTAB for the batch spectrophotometric method and 2.0 × 10−6 to 2.0 × 10−4 mol L−1 CTAB, CPB and TBC for the flow injection spectrophotometric method. The sample throughput was 35 ± 5 samples h−1 at room temperature. The relative standard deviations for 10 replicates of analysis of (2.0, 0.6 and 0.2) × 10−4 mol L−1 CTAB were 1.2, 1.3, and 0.8%, respectively. In addition, the influence of potential interfering substances on the determination of cationic surfactants was studied. The proposed method is simple and rapid, using no toxic organic solvents. It was applied to the determination of trace CS in industrial wastewater with satisfactory results.  相似文献   

20.
The direct electron transfer and electrocatalysis of hemoglobin (Hb) entrapped in polyvinyl alcohol (PVA)–room temperature ionic liquid (i.e., 1-octyl-3-methylimidazolium hexafluorophosphate [OMIM]PF6) composition has been investigated by using cyclic voltammetry and chronocoulometry. It is found that the composition can promote the direct electron transfer of Hb and the heterogeneous electron transfer rate constant (ks) of immobilized Hb is enhanced to 19.9 s−1. The immobilized Hb also shows high electro-catalytic activity towards the redox of oxygen, hydrogen peroxide and nitrite. The Michaelis constants (Km) decrease to 1.2 × 10−4 M (for hydrogen peroxide) and 9.4 × 10−3 M (for nitrite). The surface concentration of electroactive Hb is estimated and it is ca. 1.4 × 10−10 mol cm−2, meaning that several layers of immobilized Hb take part in the electrochemical reaction. When gold nanoparticles (GNP) is introduced into the composition, the resulting PVA–GNP–[OMIM]PF6 composition presents better performance. The electrochemical characteristic of immobilized Hb is improved further. Thus PVA–GNP–[OMIM]PF6 composition is more suitable for the immobilization of Hb. Therefore, it is a good strategy to prepare novel composition for protein immobilization by using several materials with different function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号