首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 538 毫秒
1.
A previous paper by the authors (Grigoriev and Meleshko, 2012 [4]) was devoted to group analysis of the equation for the power moment generating function of a solution of the Boltzmann kinetic equation with sources. An approach developed earlier by Grigoriev and Meleshko (1986 [2]) was employed for finding the admitted Lie group. This approach allowed to correct Nonenmacher׳s results (1984, [1]) and to perform a partial group classification of the considered equation with respect to a source function. The present paper completes this group classification by an efficient algebraic method.  相似文献   

2.
The existence of certain characteristic times, introduced by Bogolyubov [1], is of fundamental importance for the derivation of the Boltzmann equation from the Liouville equations. In the present paper characteristic spatial scales are also introduced, which permit a more detailed study of the influence of spatial gradients and boundary conditions. A convenient formalism, which is a generalization of the formalism of [2], is used in this study. The following has been shown for a Boltzmann gas (compare [1–4]):
  1. a)
    The Boltzmann equation is applicable for describing flows in which the condition of molecular chaos is satisfied and in which the characteristic dimension L (time T) is much greater than the diameter d (time τc) of molecular interactions.  相似文献   

3.
This study deals with symmetry group properties and conservation laws of the foam-drainage equation. Firstly, we study the classical Lie symmetries, optimal systems, similarity reductions and similarity solutions of the foam-drainage equation which are obtained through the Lie group method of infinitesimal transformations. Secondly, using the new general theorem on non-local conservation laws and partial Lagrangian approach, local and non-local conservation laws are also studied and, finally, non-classical symmetries are derived.  相似文献   

4.
Generalization of the Krook kinetic relaxation equation   总被引:3,自引:0,他引:3  
One of the most significant achievements in rarefied gas theory in the last 20 years is the Krook model for the Boltzmann equation [1]. The Krook model relaxation equation retains all the features of the Boltzmann equation which are associated with free molecular motion and describes approximately, in a mean-statistical fashion, the molecular collisions. The structure of the collisional term in the Krook formula is the simplest of all possible structures which reflect the nature of the phenomenon. Careful and thorough study of the model relaxation equation [2–4], and also solution of several problems for this equation, have aided in providing a deeper understanding of the processes in a rarefied gas. However, the quantitative results obtained from the Krook model equation, with the exception of certain rare cases, differ from the corresponding results based on the exact solution of the Boltzmann equation. At least one of the sources of error is obvious. It is that, in going over to a continuum, the relaxation equation yields a Prandtl number equal to unity, while the exact value for a monatomic gas is 2/3.In a comparatively recent study [5] Holway proposed the use of the maximal probability principle to obtain a model kinetic equation which would yield in going over to a continuum the expressions for the stress tensor and the thermal flux vector with the proper viscosity and thermal conductivity.In the following we propose a technique for constructing a sequence of model equations which provide the correct Prandtl number. The technique is based on an approximation of the Boltzmann equation for pseudo-Maxwellian molecules using the method suggested by the author previously in [6], For arbitrary molecules each approximating equation may be considered a model equation. A comparison is made of our results with those of [5].  相似文献   

5.
Various different dimensionless numbers are used to evaluate the experimental and theoretical data on the aerodynamics and heat transfer in low-density gases. They are obtained mainly in the analysis of simplified Navier—Stokes equations. In [1], the dimensionless number obtained from the Boltzmann equation is the Reynolds number Re0, in which the coefficient of viscosity is determined using the stagnation temperature. In the present paper, using the Boltzmann equation but different characteristic parameters from those in [1], we obtain the dimensionless number introduced for the first time by Cheng [2] in the analysis of the equations of a thin viscous shock layer. We show that for definite values of the characteristic temperature and dependences of the coefficient of viscosity on the temperature virtually all the dimensionless numbers used to evaluate the results of investigations into the aerodynamics and heat transfer in a low-density gas can be obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 140–144, January–February, 1981.  相似文献   

6.
In this paper, a singularly perturbed boundary value problem for second order self-adjoint ordinary differential equation is discussed. A class of variational difference schemes is constructed by the finite element method. Uniform convergence about small parameter is proved under a weaker smooth condition with respect to the coefficients of the equation. The schemes studied in refs. [1], [3], [4] and [5] belong to the class.  相似文献   

7.
The piston flow is bounded by rigid walls at y=±1, x>0 and generated by the uniform translation of the end wall x=0. After Katopodes, Davis and Stone [3] constructed a solution in terms of biorthogonal eigenfunctions, Meleshko and Krasnopolskaya [1] used a variation of an asymptotic technique developed by Meleshko and Gomilko [2] to examine the pointwise convergence of the non-orthogonal series. However, they overlooked the nonuniqueness of their solution and the consequent solvability condition which is shown here to necessitate a minor modification without significant harm to their contribution. To cite this article: A.M.J. Davis, C. R. Mecanique 330 (2002) 457–459.  相似文献   

8.
In the development of analytic methods of solution of kinetic equations, it is expedient to use group raetliods. The establishment of a symmetry group makes it possible to justify the choice of a definite model of kinetic equation corresponding to the physical formulation of the problem, to solve the Cauchy problem in a number of cases, and to obtain classes of new exact solutions that can be used as standards in the construction of numerical algorithms for solving kinetic equations. Bobylev [1–4] and Krook and Wu [5, 6] used group methods to analyze the spatially homogeneous Boltzmann equation in the case of isotropy with respect to the velocities and Maxwellian molecules. They obtained exact solutions and investigated the asymptotic behavior of the main equation. In the present paper, group methods are used to find and analyze exact solutions of the Bhatnagar-Gross-Krook kinetic equation, which successfully simulates the basic properties of the Boltzmann equation. Conclusions are drawn about the symmetries of the Boltzmann equation. To simplify the calculations, the exposition is presented for the case of the one-dimensional Bhatnagar-Gross-Krook equation with constant effective collision frequency.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 135–140, July–August, 1982.  相似文献   

9.
In this paper, the (2 + 1)-dimensional cubic generalized Kadomtsev–Petviashvili (CGKP) equation that is derived from the Maxwell–Bloch equations is investigated. By means of Lie symmetry analysis method, we obtain the Lie point symmetries for the equation and the optimal system of the symmetry algebra. Based on the optimal system, a lot of group invariant solutions are obtained. In addition, explicit conservation laws of the equation are studied.  相似文献   

10.
A one-dimensional nonlinear fractional filtration equation with the Riemann–Liouville time-fractional derivative is proposed for modeling fluid flow through a porous medium. This equation is derived under an assumption that the fluid has a fractional equation of state in which the fluid density depends on the time-fractional derivative of pressure. The obtained equation belongs to the diffusion-wave type of equations. A case when the order of fractional differentiation is close to an integer number is considered, and a small parameter is introduced into the fractional filtration equation under consideration. An expansion of the Riemann–Liouville time-fractional derivative into the series with respect to this small parameter is obtained. Using this expansion, a first-order approximation of the derived fractional filtration equation is performed. Next, the problem of approximate Lie point symmetry group classification for this approximate nonlinear filtration equation with a small parameter is studied. It is shown that approximate symmetry groups admitted by different realizations of the approximate filtration equation have much more dimensions than the corresponding exact Lie point symmetry groups admitted by unperturbed fractional diffusion-wave equations. Obtained classification results permit to construct approximate invariant solutions for the considered nonlinear time-fractional filtration equations.  相似文献   

11.
As is known, surface phenomena such as evaporation, absorption, and reflection of molecules from the surface of a body depend strongly on its temperature [1–5]. This leads to the establishment of a flow of a substance between two surfaces maintained at different temperatures (recondensation). The phenomenon of recondensation was studied in kinetic theory comparatively long ago. However, up to the present, only the case of small mass flows in a onecomponent gas has been investigated completely [3,4]. Meanwhile it is clear that by the creation of appropriate conditions we can obtain considerable flows of the recondensing substance, so that the mass-transfer rate will be of the order of the molecular thermal velocity. Such a numerical solution of the problem with strong mass flows along the normal to the surface for small Knudsen numbers for a model Boltzmann kinetic equation was obtained in [7]. In this study we numerically solve the problem of strong recondensation between two infinite parallel plates over a wide range of Knudsen numbers for a one-component and a two-component gas, on the basis of the model Boltzmann kinetic equation [6] for a one-component gas and the model Boltzmann kinetic equation for a binary mixture in the form assumed by Hamel [8], for a ratio of the plate temperatures equal to ten. We also investigate the effect of the relative plate motion on the recondensation flow.Moscow. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 130–138, September–October, 1972.  相似文献   

12.
The Monte Carlo method [1, 2] is used to solve the linearized Boltzmann equation for the problem of heat transfer between parallel plates with a wall temperature jump (Knudsen layer flow). The linear Couette problem can be separated into two problems: the problem of pure shear and the problem of heat transfer between two parallel plates. The Knudsen layer problem is also linear [3] and, like the Couette problem, can be separated into the velocity slip and temperature jump problems. The problems of pure shear and velocity slip have been examined in [2].The temperature jump problem was examined in [4] for a model Boltzmann equation. For the linearized Boltzmann equation the problems noted above have been solved either by expanding the distribution function in orthogonal polynomials [5–7], which yields satisfactory results for small Knudsen numbers, or by the method of moments, with an approximation for the distribution function selected from physical considerations in the form of polynomials [8–10]. The solution presented below does not require any assumptions on the form of the distribution function.The concrete calculations were made for a molecular model that we call the Maxwell sphere model. It is assumed that the molecules collide like hard elastic spheres whose sections are inversely proportional to the relative velocity of the colliding molecules. A gas of these molecules is close to Maxwellian or to a gas consisting of pseudo-Maxwell molecules [3].  相似文献   

13.
A new model for the nonlinear Boltzmann equation for gas mixtures is constructed by the method employed in the derivation of the McCormack model in the linearized kinetic theory [F.J. McCormack, Phys. Fluids 16 (1973) 2095]. Then it is compared numerically with other existing models proposed in [P. Andries, K. Aoki, B. Perthame, J. Stat. Phys. 106 (2002) 993] and in [L.H. Holway Jr., Phys. Fluids 9 (1966) 1658] (the so-called ES-BGK model) as well as with the original Boltzmann equation. The new model is not restricted to the Maxwell molecule, can fit to general molecular models, and reproduces well solutions of the Boltzmann equation at least in the case of weak nonequilibrium. The numerical comparison is performed in the case of a binary gas mixture consisted of the hard-sphere or pseudo Maxwell molecules, after parameters concerning the molecular interaction are adjusted appropriately.  相似文献   

14.
The method of characteristics is used to solve problems in the steady-state flows of a rarefied gas on the basis of approximating the kinetic equations. Numerical results are given for the solution of the problem of the flow from a spherical source or sink using the generalized Kruk equation [1] and approximating the Boltzmann equation by the method proposed by the author [2, 3], Various flow conditions are discussed: flow into a vacuum, flow into a flooded volume, flow from a sink.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 58–66, March–April, 1971.  相似文献   

15.
The transport of a dynamically neutral impurity by a stream into a porous medium with random inhomogeneities is considered. In contrast to [1, 2], in which a Markov random-walk process of the impurity particles was postulated substantially (taking a hypothesis about Markov random walk processes contradicts to a definite degree the representation of particle motion along a streamline, finiteness of the velocity, and smoothness of the trajectory), the complete system of equations for the filtration concentration and velocities is investigated here by a perturbation method, which results in a non-local equation for the mean concentrations after taking the average. It is shown that the local equation (parabolic or hyperbolic) is the limit case in the scheme considered. The effect of a regular drift of saturation, analogous to the effect of directed transport in the theory of inhomogeneous turbulent diffusion [3], is established. One-dimensional, plane, and three-dimensional flows are considered. The fundamental relationships contain moments of the random velocity field. The relationship between these moments and the characteristics of the random permeability and porosity fields has been established in [1, 2].  相似文献   

16.
The effect of a rigid bottom of periodic form on small periodic oscillations of the free surface of a liquid is considered with the assumption of low amplitude roughness. The methodologically most significant study in this direction, [1], will be utilized. In [1] the steady-state problem for flow over an arbitrarily rough bottom was studied. Other studies have recently appeared on small free oscillations above a rough bottom. Essentially these have considered the effect of underwater obstacles and cavities on surface waves in the shallow-water approximation (for example, [2], [3]). Liquid oscillations in a layer of arbitrary depth slowly varying with length were considered in [4]. However, these results cannot be applied to the study of resonant interaction of gravitational waves with a periodically curved bottom.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 43–48, July–August, 1984.  相似文献   

17.
A binary mixture of rarefied gases between two parallel plates is considered. The Poiseuille flow, thermal transpiration (flow caused by a temperature gradient of the plates) and concentration-driven flow (flow caused by a gradient of concentration of the component species) are analyzed on the basis of the linearized model Boltzmann equation with the diffuse reflection boundary condition. The analyses are first performed for mixtures of virtual gases composed of the hard-sphere or Maxwell molecules and the results are compared with those of the original Boltzmann equation. Then, the analyses for noble gases (He–Ne, He–Ar and Ne–Ar) are performed assuming more realistic molecular models (the inverse power-law potential and Lennard-Jones 12,6 models). By use of the results, flux databases covering the entire ranges of the Knudsen number and of the concentration and a wide range of the temperature are constructed. The databases are prepared for the use in the fluid-dynamic model for mixtures in a stationary nonisothermal microchannel derived in [S. Takata, H. Sugimoto, S. Kosuge, Eur. J. Mech. B/Fluids 26 (2007) 155], but can also be incorporated in the generalized Reynolds equation [S. Fukui, R. Kaneko, J. Tribol. 110 (1988) 253] in the gas film lubrication theory. The databases constructed can be downloaded freely from Electronic Annex 2 in the online version of this article.  相似文献   

18.
Akgül  Ali  Inc  Mustafa  Hashemi  Mir Sajjad 《Nonlinear dynamics》2017,88(4):2817-2829

This paper introduces that the nonlinear Poisson–Boltzmann equation for semiconductor devices describing potential distribution in a double-gate metal oxide semiconductor field effect transistor (DG-MOSFET) is exactly solvable. The DG-MOSFET shows one of the most advanced device structures in semiconductor technology and is a primary focus of modeling efforts in the semiconductor industry. Lie symmetry properties of this model is investigated in order to extract some exact solutions. The reproducing kernel Hilbert space method and group preserving scheme also have been applied to the nonlinear equation. Numerical results show that the present methods are very effective.

  相似文献   

19.
The L 1 and BV-type stability to mild solutions of the inelastic Boltzmann equation is given in this paper. The result is an extension of the stability of the classical solution of the elastic Boltzmann equation proved in Ha (Arch. Ration. Mech. Anal. 173:25–42, 2004 [16]). The observation relies on the energy loss of the inelastic Boltzmann equation. This is a continuity work of Alonso (Indiana Univ. Math. J. [1]), where the author obtained the global existence of a mild solution for the inelastic Boltzmann equation. The proof is based on the mollification method and constructing some functionals as the one in Chae and Ha (Contin. Mech. Thermodyn. 17(7):511–524, 2006 [9]).  相似文献   

20.
The kinetic equation proposed in [1,2] for describing the behavior of a system of particles in a gas flow differs from the usual Boltzmann equation with respect to the additional terms that take into account random variations of the particle velocity under the influence of the flow. As shown in [2], the collision operator and the Brownian-type operator in the starting kinetic equation describe essentially different simultaneous physical processes of change of state of the particle system: equalization of the mean kinetic energy of the particles and change of energy due to the action of the viscous forces associated with the suspending flow. Therefore the method of solving the kinetic equation used in [2], a direct generalization of the Chapman-Enskog method of solving the kinetic equation it is necessary to investigate method of solving the kinetic equation it is necessar y to investigate the relaxation processes in the system. Moreover, the relaxation of systems of the fluidized-bed type to the continuum state is also of independent interest in connection with the analysis of fast processes in the system, i.e., processes with a characteristic duration of the order of the mean free time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号