首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 521 毫秒
1.
We construct uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for Euler equations of compressible gas dynamics. The same framework also applies to high order accurate finite volume (e.g. essentially non-oscillatory (ENO) or weighted ENO (WENO)) schemes. Motivated by Perthame and Shu (1996) [20] and Zhang and Shu (2010) [26], a general framework, for arbitrary order of accuracy, is established to construct a positivity preserving limiter for the finite volume and DG methods with first order Euler forward time discretization solving one-dimensional compressible Euler equations. The limiter can be proven to maintain high order accuracy and is easy to implement. Strong stability preserving (SSP) high order time discretizations will keep the positivity property. Following the idea in Zhang and Shu (2010) [26], we extend this framework to higher dimensions on rectangular meshes in a straightforward way. Numerical tests for the third order DG method are reported to demonstrate the effectiveness of the methods.  相似文献   

2.
In this article we develop an improved version of the classical fifth-order weighted essentially non-oscillatory finite difference scheme of [G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202–228] (WENO-JS) for hyperbolic conservation laws. Through the novel use of a linear combination of the low order smoothness indicators already present in the framework of WENO-JS, a new smoothness indicator of higher order is devised and new non-oscillatory weights are built, providing a new WENO scheme (WENO-Z) with less dissipation and higher resolution than the classical WENO. This new scheme generates solutions that are sharp as the ones of the mapped WENO scheme (WENO-M) of Henrick et al. [A.K. Henrick, T.D. Aslam, J.M. Powers, Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points, J. Comput. Phys. 207 (2005) 542–567], however with a 25% reduction in CPU costs, since no mapping is necessary. We also provide a detailed analysis of the convergence of the WENO-Z scheme at critical points of smooth solutions and show that the solution enhancements of WENO-Z and WENO-M at problems with shocks comes from their ability to assign substantially larger weights to discontinuous stencils than the WENO-JS scheme, not from their superior order of convergence at critical points. Numerical solutions of the linear advection of discontinuous functions and nonlinear hyperbolic conservation laws as the one dimensional Euler equations with Riemann initial value problems, the Mach 3 shock–density wave interaction and the blastwave problems are compared with the ones generated by the WENO-JS and WENO-M schemes. The good performance of the WENO-Z scheme is also demonstrated in the simulation of two dimensional problems as the shock–vortex interaction and a Mach 4.46 Richtmyer–Meshkov Instability (RMI) modeled via the two dimensional Euler equations.  相似文献   

3.
In [J. Qiu, C.-W. Shu, Runge–Kutta discontinuous Galerkin method using WENO limiters, SIAM Journal on Scientific Computing 26 (2005) 907–929], Qiu and Shu investigated using weighted essentially non-oscillatory (WENO) finite volume methodology as limiters for the Runge–Kutta discontinuous Galerkin (RKDG) methods for solving nonlinear hyperbolic conservation law systems on structured meshes. In this continuation paper, we extend the method to solve two-dimensional problems on unstructured meshes, with the goal of obtaining a robust and high order limiting procedure to simultaneously obtain uniform high order accuracy and sharp, nonoscillatory shock transition for RKDG methods. Numerical results are provided to illustrate the behavior of this procedure.  相似文献   

4.
A key idea in finite difference weighted essentially non-oscillatory (WENO) schemes is a combination of lower order fluxes to obtain a higher order approximation. The choice of the weight to each candidate stencil, which is a nonlinear function of the grid values, is crucial to the success of WENO schemes. For the system case, WENO schemes are based on local characteristic decompositions and flux splitting to avoid spurious oscillation. But the cost of computation of nonlinear weights and local characteristic decompositions is very high. In this paper, we investigate hybrid schemes of WENO schemes with high order up-wind linear schemes using different discontinuity indicators and explore the possibility in avoiding the local characteristic decompositions and the nonlinear weights for part of the procedure, hence reducing the cost but still maintaining non-oscillatory properties for problems with strong shocks. The idea is to identify discontinuity by an discontinuity indicator, then reconstruct numerical flux by WENO approximation in discontinuous regions and up-wind linear approximation in smooth regions. These indicators are mainly based on the troubled-cell indicators for discontinuous Galerkin (DG) method which are listed in the paper by Qiu and Shu (J. Qiu, C.-W. Shu, A comparison of troubled-cell indicators for Runge–Kutta discontinuous Galerkin methods using weighted essentially non-oscillatory limiters, SIAM Journal of Scientific Computing 27 (2005) 995–1013). The emphasis of the paper is on comparison of the performance of hybrid scheme using different indicators, with an objective of obtaining efficient and reliable indicators to obtain better performance of hybrid scheme to save computational cost. Detail numerical studies in one- and two-dimensional cases are performed, addressing the issues of efficiency (less CPU time and more accurate numerical solution), non-oscillatory property.  相似文献   

5.
We construct uniformly high order accurate schemes satisfying a strict maximum principle for scalar conservation laws. A general framework (for arbitrary order of accuracy) is established to construct a limiter for finite volume schemes (e.g. essentially non-oscillatory (ENO) or weighted ENO (WENO) schemes) or discontinuous Galerkin (DG) method with first order Euler forward time discretization solving one-dimensional scalar conservation laws. Strong stability preserving (SSP) high order time discretizations will keep the maximum principle. It is straightforward to extend the method to two and higher dimensions on rectangular meshes. We also show that the same limiter can preserve the maximum principle for DG or finite volume schemes solving two-dimensional incompressible Euler equations in the vorticity stream-function formulation, or any passive convection equation with an incompressible velocity field. Numerical tests for both the WENO finite volume scheme and the DG method are reported.  相似文献   

6.
In this paper, we propose a semi-Lagrangian finite difference formulation for approximating conservative form of advection equations with general variable coefficients. Compared with the traditional semi-Lagrangian finite difference schemes [5], [25], which approximate the advective form of the equation via direct characteristics tracing, the scheme proposed in this paper approximates the conservative form of the equation. This essential difference makes the proposed scheme naturally conservative for equations with general variable coefficients. The proposed conservative semi-Lagrangian finite difference framework is coupled with high order essentially non-oscillatory (ENO) or weighted ENO (WENO) reconstructions to achieve high order accuracy in smooth parts of the solution and to capture sharp interfaces without introducing spurious oscillations. The scheme is extended to high dimensional problems by Strang splitting. The performance of the proposed schemes is demonstrated by linear advection, rigid body rotation, swirling deformation, and two dimensional incompressible flow simulation in the vorticity stream-function formulation. As the information is propagating along characteristics, the proposed scheme does not have the CFL time step restriction of the Eulerian method, allowing for a more efficient numerical realization for many application problems.  相似文献   

7.
The local discontinuous Galerkin (LDG) method is a spatial discretization procedure for convection–diffusion equations, which employs useful features from high resolution finite volume schemes, such as the exact or approximate Riemann solvers serving as numerical fluxes and limiters, which is termed as Runge–Kutta LDG (RKLDG) when TVD Runge–Kutta method is applied for time discretization. It has the advantage of flexibility in handling complicated geometry, h-p adaptivity, and efficiency of parallel implementation and has been used successfully in many applications. However, the limiters used to control spurious oscillations in the presence of strong shocks are less robust than the strategies of essentially non-oscillatory (ENO) and weighted ENO (WENO) finite volume and finite difference methods. In this paper, we investigated RKLDG methods with WENO and Hermite WENO (HWENO) limiters for solving convection–diffusion equations on unstructured meshes, with the goal of obtaining a robust and high order limiting procedure to simultaneously obtain uniform high order accuracy and sharp, non-oscillatory shock transition. Numerical results are provided to illustrate the behavior of these procedures.  相似文献   

8.
The paper extends weighted essentially non-oscillatory (WENO) methods to three dimensional mixed-element unstructured meshes, comprising tetrahedral, hexahedral, prismatic and pyramidal elements. Numerical results illustrate the convergence rates and non-oscillatory properties of the schemes for various smooth and discontinuous solutions test cases and the compressible Euler equations on various types of grids. Schemes of up to fifth order of spatial accuracy are considered.  相似文献   

9.
In [16], [17], we constructed uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics with the ideal gas equation of state. The technique also applies to high order accurate finite volume schemes. For the Euler equations with various source terms (e.g., gravity and chemical reactions), it is more difficult to design high order schemes which do not produce negative density or pressure. In this paper, we first show that our framework to construct positivity-preserving high order schemes in [16], [17] can also be applied to Euler equations with a general equation of state. Then we discuss an extension to Euler equations with source terms. Numerical tests of the third order Runge–Kutta DG (RKDG) method for Euler equations with different types of source terms are reported.  相似文献   

10.
气相爆轰高阶中心差分-WENO组合格式自适应网格方法   总被引:1,自引:0,他引:1  
研究一种高阶中心差分-WENO组合格式,并采用自适应网格方法进行二维和三维气相爆轰波的数值模拟.采用ZND爆轰模型的控制方程为包含化学反应源项的Euler方程组.组合格式在大梯度区采用WENO格式捕捉间断,在光滑区采用高阶中心差分格式提高计算效率.采用一种基于流场结构特征的自适应网格.计算结果,表明这种方法同时具有高精度、高分辨率和高效率的特点.  相似文献   

11.
We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities.  相似文献   

12.
We introduce a multi-domain Fourier-continuation/WENO hybrid method (FC–WENO) that enables high-order and non-oscillatory solution of systems of nonlinear conservation laws, and which enjoys essentially dispersionless, spectral character away from discontinuities, as well as mild CFL constraints (comparable to those of finite difference methods). The hybrid scheme employs the expensive, shock-capturing WENO method in small regions containing discontinuities and the efficient FC method in the rest of the computational domain, yielding a highly effective overall scheme for applications with a mix of discontinuities and complex smooth structures. The smooth and discontinuous solution regions are distinguished using the multi-resolution procedure of Harten [J. Comput. Phys. 115 (1994) 319–338]. We consider WENO schemes of formal orders five and nine and a FC method of order five. The accuracy, stability and efficiency of the new hybrid method for conservation laws is investigated for problems with both smooth and non-smooth solutions. In the latter case, we solve the Euler equations for gas dynamics for the standard test case of a Mach three shock wave interacting with an entropy wave, as well as a shock wave (with Mach 1.25, three or six) interacting with a very small entropy wave and evaluate the efficiency of the hybrid FC–WENO method as compared to a purely WENO-based approach as well as alternative hybrid based techniques. We demonstrate considerable computational advantages of the new FC-based method, suggesting a potential of an order of magnitude acceleration over alternatives when extended to fully three-dimensional problems.  相似文献   

13.
The hierarchical reconstruction (HR) [Y.-J. Liu, C.-W. Shu, E. Tadmor, M.-P. Zhang, Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction, SIAM J. Numer. Anal. 45 (2007) 2442–2467; Z.-L. Xu, Y.-J. Liu, C.-W. Shu, Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO type linear reconstruction and partial neighboring cells, J. Comput. Phys. 228 (2009) 2194–2212] is applied to a piecewise quadratic spectral volume method on two-dimensional unstructured grids as a limiting procedure to prevent spurious oscillations in numerical solutions. The key features of this HR are that the reconstruction on each control volume only uses adjacent control volumes, which forms a compact stencil set, and there is no truncation of higher degree terms of the polynomial. We explore a WENO-type linear reconstruction on each hierarchical level for the reconstruction of high degree polynomials. Numerical computations for scalar and system of nonlinear hyperbolic equations are performed. We demonstrate that the hierarchical reconstruction can generate essentially non-oscillatory solutions while keeping the resolution and desired order of accuracy for smooth solutions.  相似文献   

14.
给出一种求解双曲型守恒律的五阶半离散中心迎风格式.对一维问题,该格式以五阶中心WENO重构为基础;对二维问题,用逐维计算的方法将五阶中心WENO重构进行推广.时间方向的离散采用Runge-Kutta方法.格式保持了中心差分格式简单的优点,即不用求解Riemann问题,避免进行特征分解.用该格式对一维和二维Euler方程进行数值试验,结果表明该格式是高精度、高分辨率的.  相似文献   

15.
We develop a locally conservative Eulerian–Lagrangian finite volume scheme with the weighted essentially non-oscillatory property (EL–WENO) in one-space dimension. This method has the advantages of both WENO and Eulerian–Lagrangian schemes. It is formally high-order accurate in space (we present the fifth order version) and essentially non-oscillatory. Moreover, it is free of a CFL time step stability restriction and has small time truncation error. The scheme requires a new integral-based WENO reconstruction to handle trace-back integration. A Strang splitting algorithm is presented for higher-dimensional problems, using both the new integral-based and pointwise-based WENO reconstructions. We show formally that it maintains the fifth order accuracy. It is also locally mass conservative. Numerical results are provided to illustrate the performance of the scheme and verify its formal accuracy.  相似文献   

16.
A new third-order Energy Stable Weighted Essentially Non-Oscillatory (ESWENO) finite difference scheme for scalar and vector hyperbolic equations with piecewise continuous initial conditions is developed. The new scheme is proven to be linearly stable in the energy norm for both continuous and discontinuous solutions. In contrast to the existing high-resolution shock-capturing schemes, no assumption that the reconstruction should be total variation bounded (TVB) is explicitly required to prove stability of the new scheme. We also present new weight functions which drastically improve the accuracy of the third-order ESWENO scheme. Based on a truncation error analysis, we show that the ESWENO scheme is design-order accurate for smooth solutions with any number of vanishing derivatives, if its tuning parameters satisfy certain constraints. Numerical results show that the new ESWENO scheme is stable and significantly outperforms the conventional third-order WENO scheme of Jiang and Shu in terms of accuracy, while providing essentially non-oscillatory solutions near strong discontinuities.  相似文献   

17.
We present a high-order accurate weighted essentially non-oscillatory (WENO) finite difference scheme for solving the equations of ideal magnetohydrodynamics (MHD). This scheme is a direct extension of a WENO scheme, which has been successfully applied to hydrodynamic problems. The WENO scheme follows the same idea of an essentially non-oscillatory (ENO) scheme with an advantage of achieving higher-order accuracy with fewer computations. Both ENO and WENO can be easily applied to two and three spatial dimensions by evaluating the fluxes dimension-by-dimension. Details of the WENO scheme as well as the construction of a suitable eigen-system, which can properly decompose various families of MHD waves and handle the degenerate situations, are presented. Numerical results are shown to perform well for the one-dimensional Brio–Wu Riemann problems, the two-dimensional Kelvin–Helmholtz instability problems, and the two-dimensional Orszag–Tang MHD vortex system. They also demonstrate the importance of maintaining the divergence free condition for the magnetic field in achieving numerical stability. The tests also show the advantages of using the higher-order scheme. The new 5th-order WENO MHD code can attain an accuracy comparable with that of the second-order schemes with many fewer grid points.  相似文献   

18.
In this paper, we propose a novel Vlasov solver based on a semi-Lagrangian method which combines Strang splitting in time with high order WENO (weighted essentially non-oscillatory) reconstruction in space. A key insight in this work is that the spatial interpolation matrices, used in the reconstruction process of a semi-Lagrangian approach to linear hyperbolic equations, can be factored into right and left flux matrices. It is the factoring of the interpolation matrices which makes it possible to apply the WENO methodology in the reconstruction used in the semi-Lagrangian update. The spatial WENO reconstruction developed for this method is conservative and updates point values of the solution. While the third, fifth, seventh and ninth order reconstructions are presented in this paper, the scheme can be extended to arbitrarily high order. WENO reconstruction is able to achieve high order accuracy in smooth parts of the solution while being able to capture sharp interfaces without introducing oscillations. Moreover, the CFL time step restriction of a regular finite difference or finite volume WENO scheme is removed in a semi-Lagrangian framework, allowing for a cheaper and more flexible numerical realization. The quality of the proposed method is demonstrated by applying the approach to basic test problems, such as linear advection and rigid body rotation, and to classical plasma problems, such as Landau damping and the two-stream instability. Even though the method is only second order accurate in time, our numerical results suggest the use of high order reconstruction is advantageous when considering the Vlasov–Poisson system.  相似文献   

19.
We develop a class of Lagrangian type schemes for solving the Euler equations of compressible gas dynamics both in the Cartesian and in the cylindrical coordinates. The schemes are based on high order essentially non-oscillatory (ENO) reconstruction. They are conservative for the density, momentum and total energy, can maintain formal high order accuracy both in space and time and can achieve at least uniformly second-order accuracy with moving and distorted Lagrangian meshes, are essentially non-oscillatory, and have no parameters to be tuned for individual test cases. One and two-dimensional numerical examples in the Cartesian and cylindrical coordinates are presented to demonstrate the performance of the schemes in terms of accuracy, resolution for discontinuities, and non-oscillatory properties.  相似文献   

20.
We develop a class of Lagrangian type schemes for solving the Euler equations of compressible gas dynamics both in the Cartesian and in the cylindrical coordinates. The schemes are based on high order essentially non-oscillatory (ENO) reconstruction. They are conservative for the density, momentum and total energy, can maintain formal high order accuracy both in space and time and can achieve at least uniformly second-order accuracy with moving and distorted Lagrangian meshes, are essentially non-oscillatory, and have no parameters to be tuned for individual test cases. One and two-dimensional numerical examples in the Cartesian and cylindrical coordinates are presented to demonstrate the performance of the schemes in terms of accuracy, resolution for discontinuities, and non-oscillatory properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号