首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The dynamic compressive response of a sandwich plate with a metallic corrugated core is predicted. The back face of the sandwich plate is held fixed whereas the front face is subjected to a uniform velocity, thereby compressing the core. Finite element analysis is performed to investigate the role of material inertia, strain hardening and strain rate hardening upon the dynamic collapse of the corrugated core. Three classes of collapse mode are identified as a function of impact velocity: (i) a three-hinge plastic buckling mode of wavelength equal to the strut length, similar to the quasi-static mode, (ii) a ‘buckle-wave’ regime involving inertia-mediated plastic buckling of wavelength less than that of the strut length, and (iii) a ‘stubbing’ regime, with shortening of the struts by local fattening at the front face. The presence of strain hardening reduces the regime of dominance of the stubbing mode. The influence of material strain rate sensitivity is evaluated by introducing strain rate dependent material properties representative of type 304 stainless steel. For this choice of material, strain rate sensitivity has a more minor influence than strain hardening, and consequently the dynamic collapse strength of a corrugated core is almost independent of structural dimension.  相似文献   

2.
A model is developed for brittle failure under compressive loading with an explicit accounting of micro-crack interactions. The model incorporates a pre-existing flaw distribution in the material. The macroscopic inelastic deformation is assumed to be due to the nucleation and growth of tensile “wing” micro-cracks associated with frictional sliding on these flaws. Interactions among the cracks are modeled by means of a crack-matrix-effective-medium approach in which each crack experiences a stress field different from that acting on isolated cracks. This yields an effective stress intensity factor at the crack tips which is utilized in the formulation of the crack growth dynamics. Load-induced damage in the material is defined in terms of a scalar crack density parameter, the evolution of which is a function of the existing flaw distribution and the crack growth dynamics. This methodology is applied for the case of uniaxial compression under constant strain rate loading. The model provides a natural prediction of a peak stress (defined as the compressive strength of the material) and also of a transition strain rate, beyond which the compressive strength increases dramatically with the imposed strain rate. The influences of the crack growth dynamics, the initial flaw distribution, and the imposed strain rate on the constitutive response and the damage evolution are studied. It is shown that different characteristics of the flaw distribution are dominant at different imposed strain rates: at low rates the spread of the distribution is critical, while at high strain rates the total flaw density is critical.  相似文献   

3.
制备了颗粒规则四方排列和六方排列的橡胶粘接颗粒材料试样,实验测试了所制备试样在单向拉伸载荷下的应力松弛曲线和不同应变率时的应力应变曲线。基于所测试的应力松弛曲线,采用曲线拟合方法得到了所测试材料的宏观Burger’s粘弹性本构模型参数。采用离散元模型中单元间连结模型代表颗粒间橡胶粘接剂的作用,并基于试样的宏观Burger’s模型参数与离散元模型中细观Burger’s连结模型参数间的关系,建立了橡胶粘接颗粒材料的无厚度胶结离散元分析模型。最后采用所建立的离散元模型计算了所测试试样的松弛和拉伸力学性能。离散元预测结果与实验结果的对比表明,采用无厚度胶结离散元模型能较好的计算颗粒规则排列的橡胶粘接颗粒材料松弛和拉伸力学性能,但基于应力松弛实验拟合而来参数不能准确反应橡胶粘接剂在高应变率条件下其力学性能的应变率相关性。  相似文献   

4.
采用HMH-206高速材料试验机开展了6061-T6铝合金在0.001~100 s-1应变率范围内的静、动态拉伸力学性能实验,分析了其应力-应变响应特征和应变率敏感性,讨论了应变率对6061-T6铝合金流动应力和应变率敏感性指数的影响,并基于实验结果对Johnson-Cook本构模型进行了修正。结合缺口试件的实验结果和模拟数据,得到了材料的Johnson-Cook失效模型参数,并对模型的准确性和适用性进行了验证。结果表明,在拉伸载荷作用下,6061-T6铝合金表现出明显的应变硬化特征和应变率敏感性,其流动应力随应变率的升高而提高,修正的Johnson-Cook本构模型可以描述材料的动态塑性流动行为,建立的Johnson-Cook失效模型能够表征材料的断裂失效行为。  相似文献   

5.
Superelastic polycrystalline NiTi shape memory alloys under tensile loading accompany the strain localization and propagation phenomena. Experiments showed that the number of moving phase fronts and the mechanical behavior are very sensitive to the loading rate due to the release/absorption of latent heat and the material’s inherent temperature sensitivity of the transformation stress. In this paper, the moving heat source method based on the heat diffusion equation is used to study the temperature evolution of one-dimensional superelastic NiTi specimen under different loading rates and boundary conditions with moving heat sources or a uniform heat source. Comparisons of temperature variations with different boundary conditions show that the heat exchange at the boundaries plays a major role in the nonuniform temperature profile that directly relates to the localized deformation. Analytical relation between the front temperature of a single phase front, the inherent Clausius–Clapeyron relation (sensitivity of the material’s transformation stress with temperature), heat transfer boundary conditions and the loading rate is established to analyze the nucleation of new phase fronts. Finally, the rate-dependent stress hysteresis is also simply discussed by using the results of temperature analyses.  相似文献   

6.
为研究低高应变率条件下NEPE推进剂的力学特性,通过电子万能试验机和分离式霍普金森杆装置,对NEPE推进剂进行了准静态和冲击实验,得到了不同应变率下(1.667×10?4~4 500 s?1)的应力-应变曲线。实验结果表明NEPE推进剂具有明显的非线性弹性和应变率敏感性,随着应变率的增加,材料的强度、屈服应力和弹性模量显著增加,与低应变率相比,高应变率条件下材料的应变率敏感性更高。在高速冲击下材料内部瞬间产生大量热量无法及时散发出去,使得材料内部温度升高,导致材料出现软化效应,力学性能降低。本文建立了一个非线性黏超弹本构模型,其中采用Rivlin应变能函数来描述稳态超弹响应部分,采用积分型本构模型来描述材料的动态黏弹性响应部分,考虑到松弛时间具有应变率相关性,本文采用了一个率相关松弛函数来替代传统的Prony级数形式。使用极慢速压缩实验数据对本构模型中的超弹部分进行拟合获得超弹参数,然后用准静态和动态实验数据对本构模型进行拟合得出其他参数。不同应变率下的预测曲线与实验曲线具有较好的重合度,证明了该模型可以很好地描述低高应变率下NEPE推进剂的力学特性。  相似文献   

7.
Summary An integral equation formulation for the dynamic biaxial response of slightly curved elastic-viscoplastic beams is presented in the context of a multiple field analysis, which takes into account the geometrically nonlinear influence of moderately large deflections. Materials are considered in the regime of rate-dependent plasticity and are subjected to accumulated ductile damage. The latter is modeled by the growth of voids in the plastic zones of an initially porous elastic material. Inelastic defects of the material are considered in the linear elastic background beam by a second imposed strain field (eigenstrains). Geometrically nonlinear effects of large deflections under conditions of immovable supports are approximately taken into account. By inspection, they render another “strain field” to be imposed on the linear background beam. Superposition applies in the linear elastic background in an incremental formulation. Linear methods, as those based on Green's functions and Duhamel's integral, are used to account for the given loads as well as for the resultants of the imposed strain fields. The intensity and the distribution of the imposed strain fields are calculated incrementally in a time-stepping procedure. They are determined by the constitutive law and by application of the nonlinear geometric relations. The numerical procedure resulting from the multiple fields in the elastic background is illustrated for two cases: (1) a preloaded viscoplastic beam of rectangular cross section is subjected to oblique flexural vibrations when forced by a sinusoidal load, and (2) an I-beam with a prescribed initial curvature is severely impacted and thus driven into the plastic regime. Accepted for publication 22 November 1996  相似文献   

8.
In this study, strain rate sensitivity of yield behavior in a semicrystalline polymer, Nylon 101, was experimentally investigated. A precise definition of yield was established for the polymer by deforming several specimens to certain levels of strain and measuring the residual strains after unloading and strain recovery. The material was then subjected to different loading conditions (uniaxial to multiaxial) at four different quasi-static and intermediate strain rates to determine several points on the material's yield loci. Due to positive strain rate sensitivity of this polymer, the material's yield loci expanded uniformly as the strain rates were increased to higher values. Further, an empirical hydrostatic pressure dependent yield equation (with four material constants) was developed to simulate these behaviors as a function of strain rate. The capability of the developed criterion was examined by simulating high strain rate yield behavior of the material in tension and in compression. The simulation results revealed very good correlations/predictions between the experimental data and the responses determined from the proposed yield criterion.  相似文献   

9.
A computational procedure is presented for evaluating the sensitivity coefficients of the thermomechanical response of welded structures. Uncoupled thermomechanical analysis, with transient thermal analysis and quasi-static mechanical analysis, is performed. A rate independent, small deformation thermo-elasto-plastic material model with temperature-dependent material properties is adopted in the study. The temperature field is assumed to be independent of the stresses and strains. The heat transfer equations emanating from a finite element semi-discretization are integrated using an implicit backward difference scheme to generate the time history of the temperatures. The mechanical response during welding is then calculated by solving a generalized plane strain problem. First- and second-order sensitivity coefficients of the thermal and mechanical response quantities (derivatives with respect to various thermomechanical parameters) are evaluated using a direct differentiation approach in conjunction with an automatic differentiation software facility. Numerical results are presented for a double fillet conventional welding of a stiffener and a base plate made of stainless steel AL-6XN material. Time histories of the response and sensitivity coefficients, and their spatial distributions at selected times are presented.  相似文献   

10.
Previous experiments have shown that stress-induced martensitic transformation in certain polycrystalline NiTi shape memory alloys can lead to strain localization and propagation phenomena when loaded in uniaxial tension. The number of nucleation events and kinetics of transformation fronts were found to be sensitive to the nature of the ambient media and imposed loading rate due to the release/absorption of latent heat and the material's inherent temperature sensitivity of the transformation stress. A special plasticity-based constitutive model used within a 3-D finite element framework has previously been shown to capture the isothermal, purely mechanical front features seen in experiments of thin uniaxial NiTi strips. This paper extends the approach to include the thermo-mechanical coupling of the material with its environment. The simulations successfully capture the nucleation and evolution of fronts and the corresponding temperature fields seen during the experiments.  相似文献   

11.
Experimental results describing the behavior of five types of miniature resistance strain gages subjected to cyclic strains of high amplitude are presented. Test procedure and instrumentation are described. Changes in zero drift and changes in gage sensitivity are discussed with respect to various strain gage and test variables. Mechanisms of gage failure, effect of variation of imposed strain and hysteresis in gage response are discussed.  相似文献   

12.
The parallel plates geometry is often deemed unsuitable for nonlinear viscoelasticity measurements because the strain field, and thus the nonlinear response, varies across the sample. Although cone–plate and Couette geometries are designed to circumvent this problem by ensuring a uniform strain field, it is not always easy to shape the material to the complex shapes that is required for these geometries. This has motivated the development of techniques to accurately determine the nonlinear stress response using the more convenient plate–plate geometry. Here, we introduce a new approach to obtain this true material response in large amplitude oscillatory shear (LAOS) experiments using the plate–plate geometry. By tracing the Fourier components of the torque response and their derivatives with respect to the maximum applied deformation, we accurately obtain the material’s true stress–strain response from parallel plate measurements. The approach does not require any assumptions about the material’s viscoelastic behavior. We test our approach experimentally on fibrin biopolymer gels, as well as numerically on a Giesekus model. We confirm in both cases that our approach captures the detailed shape of the true stress response in LAOS measurements. Moreover, we also show that our method is less sensitive to experimental noise present in the data than the previous standard method. Our approach for obtaining the true stress response from parallel plate measurements is directly applicable to measurements on a wide range of solid-like nonlinear materials, including biological networks, tissues, or hydrogels.  相似文献   

13.
ABSTRACT

This paper presents approximate solutions to the dynamic response of three impulsively loaded structures: a wire with an impulsively loaded end mass, an impulsively loaded circular ring, and a cantilever beam with a tip mass subjected to an impulsive load at its tip. The material is assumed to be rigid, perfectly plastic with strain rate sensitivity. A proposed power law form of yield stress strain rate relationship is used to simplify the theoretical development. Numerical solutions are presented for mild steel and are compared with previously published results. Elastic effects and wave propogations are ignored.  相似文献   

14.
This paper presents a design sensitivity analysis method by the consistent tangent operator concept-based boundary element implicit algorithm. The design variables for sensitivity analysis include geometry parameters, elastic–viscoplastic material parameters and boundary condition parameters. Based on small strain theory, Perzyna’s elastic–viscoplastic material constitutive relation with a mixed hardening model and two flow functions is considered in the sensitivity analysis. The related elastic–viscoplastic radial return algorithm and the formula of elastic–viscoplastic consistent tangent operator are derived and discussed. Based on the direct differentiation approach, the incremental boundary integral equations and related algorithms for both geometric and elastic–viscoplastic sensitivity analysis are developed. A 2D boundary element program for geometry sensitivity, elastic–viscoplastic material constant sensitivity and boundary condition sensitivity has been developed. Comparison and discussion with the results of this paper, analytical solution and finite element code ANSYS for four plane strain numerical examples are presented finally.  相似文献   

15.
The diffuse plastic instability in tubes and sheets under biaxial stress conditions is examined by the use of perturbation methods. Very general constitutive relationships for material properties are used. This requires the inclusion of first order changes in the strain directions inside the patch and also treatment of the material anisotropy and strain rate sensitivity in addition to strain hardening. The inclusion of variations in strain direction is found to alter the form of the characteristic equation for stability from first order to second order but both roots are real for all cases investigated. The value of strain hardening at which the largest root becomes significantly positive is almost the same as that reached when changes in strain directors are ignored. However the strain hardening at which this root becomes formally zero can be very different. The former condition is considered to be of more practical importance than the latter. By this test the stability increases rapidly above a strain rate sensitivity of about 0.1.  相似文献   

16.
The stability theories energetically associated with different finite strain measures are equivalent if the tangential moduli are transformed as a function of the stress. However, for homogenized soft-in-shear composites, they can differ greatly if the material is in small-strain and constant elastic moduli measured in small-strain tests are used. Only one theory can then be correct. The preceding variational energy analysis showed that, for sandwich columns and elastomeric bearings, respectively, the correct theories are Engesser’s and Haringx’s, associated with Green’s and Almansi’s Lagrangian strain tensors, respectively. This analysis is reviewed, along with supporting experimental and numerical results, and is then extended to arbitrary multiaxially loaded homogenized soft-in-shear orthotropic composites. It is found that, to allow the use of constant shear modulus when the material is in small strain, the correct stability theory is associated with a general Doyle–Ericksen finite strain tensor of exponent m depending on the principal stress ratio. Further it is shown that the standard updated Lagrangian algorithm for finite element analysis, which is associated with Green’s Lagrangian finite strain, can give grossly incorrect results for homogenized soft-in-shear structures and needs to be generalized for arbitrary finite strain measure to allow using constant shear modulus for critical loads at small strain.  相似文献   

17.
Certain sheet metal alloys of industrial interest show a significant increase in ductility, over conventional forming methods, when high speed electromagnetic processes are used. The present work models the necking localization of a metal sheet during an electromagnetic process and examines the factors that influence this process. A Marciniak–Kuczynski “weak band” model is used to predict the onset of necking of a thin sheet under plane stress, an idealization of the local conditions in a thin sheet subjected to unconstrained electromagnetic loading. It is found that electromagnetic forming (EMF) increases ductility over quasistatic techniques due to the material’s strain-rate sensitivity, with ductility increasing monotonically with applied strain rates. The electric current also increases onset of necking strains, but the details depend on thermal sensitivity and temperature-dependence of the strain-rate sensitivity exponent. Given the insensitivity of the results to actual strain profiles, this local type analysis provides a useful tool that can be used for ductility predictions involving EMF processes.  相似文献   

18.
The split Hopkinson pressure bar experimental technique is used to evaluate the squeezing flow response of a concentrated, discontinuously thickening colloidal suspension of spherical silica particles loaded at high stresses/strain rates. These results provide insight into the transitional behavior of these materials, as well as the post-transitional response under compressive loading. A method of analyzing the strain and strain rate dependent behavior is presented to identify modes of material response (viscous, elastic, etc.). Experimental results are presented as stress–strain–strain rate plots and a surface fitting approach is used to develop a phenomenological model describing the overall response. From this model, it is possible to identify regions of elastic and viscous behavior using a gradient analysis approach. It was found that, after an initial period of viscous deformation, the suspension behaves like a viscoelastic material – this regime corresponds well with transition in which large clusters of particles percolate. This is followed by a third, viscous regime in which the material undergoes viscous deformation. At the highest stresses, a plateau region of plastic deformation has been identified. This approach and the conditions under which it may be applied are described in detail in the paper.  相似文献   

19.
A recently developed viscoplastic-damage type of constitutive theory for high strain-rate flow processes and ductile fracture is used to model the deformation and fracture of dynamically loaded smooth cylindrical tensile bars. The analysis assumes polycrystalline materials which usually contain microvoids with an average density of the order of 106 per cm3 that are dispersed homogeneously throughout. It is shown that for dynamically imposed loading that produce nominal strain rates ranging between 5 × 102 − 5 × 103 sec −1, the inhomogeneous fields of stress and deformation caused by wave propagation and wave reflection induce necking at different locations along the gauge section, depending upon the strain-rate imposed. This occurs without imposition of any geometrical or material irregularity to preposition the location of the necking. The imposed rate of strain is also shown to affect the magnitude of the strain at which necking initiates, as well as the strain required for fracture.  相似文献   

20.
Failure in micro-reinforced composites is investigated numerically using the strain-gradient plasticity theory of Gudmundson [Gudmundson, P., 2004. A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 52 (6) 1379–1406] in a plane strain visco-plastic formulation. Bi-axially loaded unit cells are used and failure is modeled using a cohesive zone at the reinforcement interface. During debonding a sudden stress drop in the overall average stress–strain response is observed. Adaptive higher-order boundary conditions are imposed at the reinforcement interface for realistically modeling the restrictions on moving dislocations as debonding occurs. It is found that the influence of the imposed higher-order boundary conditions at the interface is minor. If strain-gradient effects are accounted for a void with a smooth shape develops at the reinforcement interface while a smaller void having a sharp tip nucleates if strain-gradient effects are excluded. Using orthogonalization of the plastic strain gradient with three corresponding material length scales it is found that, the first length scale dominates the evaluated overall average stress–strain response, the second one only has a small effect and the third one has an intermediate effect. Finally, studies of reinforcement having elliptical cross-sections show rather significant gradients of stress which is not seen for the corresponding circular cross-sections. Also, an increased drop in the overall load carrying capacity is observed for cross-sections elongated perpendicular to the principal tensile direction compared to the corresponding circular cross-sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号