首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with Adaptive Mesh Refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate “level-solve” packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation (Ψtc). We analyze the magnitude of the Ψtc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichlet boundary data at the coarse–fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the “partial temperature” scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of Ψtc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory and demonstrates the inadequacy of gray diffusion.  相似文献   

2.
Multi-pulse laser ablation of silver in deionized water was studied. The laser beams were arranged in a cross-beam configuration. In our experiments, two single-mode, Q-switched Nd-Yag lasers operating at 1064 nm, pulse duration of 5.5 ns and 10 Hz rep rate were used. The laser fluence of the second beam was 0.265 J/cm2 for all tests. Two levels of the laser fluences were used for the ablating beam: 0.09 and 0.265 J/cm2 (11,014 and 33,042 J/cm2 at the focal point, respectively). The silver target was at 50 mm from the cell window and 10 mm deep. The second beam was aligned parallelly with the silver target and focused at 2 mm in front of the focal point of the ablating beam. For all cases, the delay time between the ablating beam and the cross-beam was 40 μs. In general, the ablated particles were almost all spherical. For fluence of 0.09 J/cm 2 and single-beam approach, the mean particle size was about 29 nm. The majority of the particles, however, were in 19–35 nm range and there were some big ones as large as 50–60 nm in size. For double-beam approach, the particles were smaller with the average size of about 18 nm and the majority of the particles were in 9–21 nm range with few big one as large as 40 nm. For the beam fluence of 0.265 J/cm2 and single-beam configuration, the particle sizes were smaller, the mean particles size was about 18 nm and the majority of the particles were in the range of 10–22 nm with some big one as large as 40 nm. For double-beam approach, the mean particle size was larger (24.2 nm) and the majority of the particle were distributed from 14 to 35 nm with some big particles can be found with sizes as big as 70 nm. Preliminary measurements of the thermal conductivity and viscosity of the produced samples showed that the thermal conductivity increased about 3–5% and the viscosity increased 3.7% above the base fluid viscosity even with the particle volume concentration as low as 0.01%.  相似文献   

3.
《Current Applied Physics》2010,10(6):1427-1435
The paper presents a new body RF coil design scheme for a low-field open MRI system. The RF coil is composed of four rectangular loops which are made of wide copper strips located near the surfaces of the bottom and top pole faces of the permanent magnet. The body RF coil has been designed by using the pseudo electric dipole radiation (PEDPR) method with the Metropolis algorithm. In the calculation of the RF fields via the finite difference time domain (FDTD) method, the computational time increases as the RF frequency becomes lower. Moreover, the computational process using the FDTD method takes a very long time when the RF coil is optimized. The optimization requires varying the configuration of the RF coil system and performing successive calculations of field strength and field homogeneity. When we perform these successive calculations, the computational time can be reduced by using the PEDPR method, where the segmented current elements of the RF coil are treated as pseudo electric dipole radiation sources. Because the RF coil is made of wide strips, the variation of the current density on the strip has been considered in the B1-field calculation. For each configuration of the RF coil system, the current distribution is calculated via circuit analysis, where each copper strip is considered as a parallel combination of current element lines. The preliminary field calculation study by the FDTD method verifies both the circuit analysis method for the current distribution and the PEDPR method for the radiation field strength. The optimization of the RF coil configuration is performed by the Simulated Annealing (SA) process using the Metropolis algorithm. Simulations have been performed for a 10 MHz RF frequency. The optimized RF coil has four rectangular loops of 37 cm × 100 cm with 6.5 cm wide strips which are separated vertically 49 cm and horizontally center-to-center 63 cm. In the 25 cm diameter of spherical volume (DSV), the design results show a good field inhomogeneity of the B1-field below 0.49 dB (5.8%).  相似文献   

4.
A 3C-silicon carbide (SiC) thin film grown on a Si(1 0 0) surface using an ethylene (C2H4) molecular beam has been studied by atomic force microscopy. At the center of the irradiation area of the ethylene beam, the shape of the SiC islands was rectangular, the average length of which was 74.5 nm and the average height was 13.1 nm. Each SiC island consists of the SiC particles with the average diameter of 17 nm. Just inside of the boundary region of the beam irradiation, the average size and height of the islands decreased to 50.1 and 8.2 nm, respectively. Just outside of the boundary region, the average size and height decreased to 17.7 and 5.1 nm, respectively. The average reaction probabilities at the above three points were estimated to be 0.14, 0.27 and 2.7%, respectively. New growth mode of the crystal growth is proposed (particles gathering island mode).  相似文献   

5.
An immersed boundary method (IBM) with second-order spatial accuracy is presented for fully resolved simulations of incompressible viscous flows laden with rigid particles. The method is based on the computationally efficient direct-forcing method of Uhlmann [M. Uhlmann, An immersed boundary method with direct forcing for simulation of particulate flows, J. Comput. Phys. 209 (2005) 448–476] that is embedded in a finite-volume/pressure-correction method. The IBM consists of two grids: a fixed uniform Eulerian grid for the fluid phase and a uniform Lagrangian grid attached to and moving with the particles. A regularized delta function is used to communicate between the two grids and proved to be effective in suppressing grid locking. Without significant loss of efficiency, the original method is improved by: (1) a better approximation of the no-slip/no-penetration (ns/np) condition on the surface of the particles by a multidirect forcing scheme, (2) a correction for the excess in the effective particle diameter by a slight retraction of the Lagrangian grid from the surface towards the interior of the particles with a fraction of the Eulerian grid spacing, and (3) an enhancement of the numerical stability for particle–fluid mass density ratios near unity by a direct account of the inertia of the fluid contained within the particles. The new IBM contains two new parameters: the number of iterations Ns of the multidirect forcing scheme and the retraction distance rd. The effect of Ns and rd on the accuracy is investigated for five different flows. The results show that rd has a strong influence on the effective particle diameter and little influence on the error in the ns/np condition, while exactly the opposite holds for Ns. A novel finding of this study is the demonstration that rd has a strong influence on the order of grid convergence. It is found that for spheres the choice of rd = 0.3Δx yields second-order accuracy compared to first-order accuracy of the original method that corresponds to rd = 0. Finally, Ns = 2 appears optimal for reducing the error in the ns/np condition and maintaining the computational efficiency of the method.  相似文献   

6.
Ge atoms have been deposited on domain-patterned clean Si(111)-(7 × 7) and oxidized Si(111)-(7 × 7) surfaces. Clustering of Ge from the deposited Ge adatoms on these two kinds of surfaces shows contrasting patterns. On the clean Si surface, clustering predominantly occurs on domain boundaries, which include step edges on two sides. This leaves small domains denuded. Ge diffusion length has been estimated from the size of these denuded domains. For large domains, additional clustering is observed within the domains. For the oxidized Si surface, the pattern formation is in sharp contrast with that for the clean Si surface. In this case the domain boundaries remain relatively empty and there is strong clustering within the domains leading to the formation of dense Ge nanoislands within the domains. This contrasting pattern formation has been explained via a reaction diffusion model.  相似文献   

7.
In order to enhance the superconductive properties of the high temperature superconductors, nanoparticles acting as pinning centers can be intentionally introduced into the structure by chemical doping. In this study, a Dy-doped YBa2Cu3O7?x (YBCO) coated conductor, prepared by a metal organic decomposition process, was investigated to determine the size, composition and 3D distribution of the nanoparticles. It was found that the addition of Dy results in the formation of a high density of secondary phase nanoparticles of composition (YsDy1?s)2Cu2O5 with s  0.6. A tomographic tilt series was acquired by using a scanning transmission electron microscope to analyze the interaction between the particles and the structural defects and to determine the 3D distribution of nanoparticles. For the investigated sample volume (0.06 μm3), 71 particles were located with a particle size distribution ranging between 13 and 135 nm with an average size of ~30 nm. The distribution uniformity, position and the size of the particles are observed to be dependent on the interaction of the particles with the twin boundaries. It is observed that the larger particles are generally located on more than one twin boundary, moreover, the particle size is smaller on the twin boundaries shared by several particles. This suggests that the growth of the particles is determined by fast twin boundary diffusion and the formation of the large particles might be prevented by altering the temperature–time parameters of the production processing to enhance the flux pinning characteristic of the superconductors by achieving a more uniform size of flux pinning centers.  相似文献   

8.
We report on the experimental demonstration of saturated X-ray lasing on the 4 d  4p, J = 0–1 line of nickel-like barium (Ba, Z = 56) at a wavelength of 9.2 nm, using a main pulse energy of 9 J in a 1.5-ps duration pulse from a Nd:glass chirped-pulse amplification laser. Gain saturation was achieved by applying a triple-pulse scheme in which a weak (few-percent) prepulse, preceding the main pulse by 2.4 ns, is followed by a second, relatively intense (16%) prepulse ~ 50 ps before the main pulse. For handling convenience, compound targets of BaF2 were used, either in the form of windows or coated onto glass slides.  相似文献   

9.
The influence of stiffeners on plate vibration and noise radiation induced by turbulent boundary layers is investigated by wind tunnel measurements. Plates with and without stiffeners are tested under the flow speed of 60 m/s, 71 m/s and 86 m/s, respectively. The stiffeners are set either perpendicular or parallel to the direction of the free stream. Measured vibration and noise levels are compared with theoretical calculations, where wall pressure cross-spectra are described by the Corcos model. For the plates tested, it is evident that stiffeners perpendicular to the direction of the free stream could increase noise radiation, but have almost no influence on vibration level of plates.  相似文献   

10.
The concern of the present work is the introduction of a very efficient asymptotic preserving scheme for the resolution of highly anisotropic diffusion equations. The characteristic features of this scheme are the uniform convergence with respect to the anisotropy parameter 0 < ε ? 1, the applicability (on cartesian grids) to cases of non-uniform and non-aligned anisotropy fields b and the simple extension to the case of a non-constant anisotropy intensity 1/ε. The mathematical approach and the numerical scheme are different from those presented in the previous work [P. Degond, F. Deluzet, A. Lozinski, J. Narski, C. Negulescu, Duality-based asymptotic-preserving method for highly anisotropic diffusion equations, Communications in Mathematical Sciences 10 (1) (2012) 1–31] and its considerable advantages are pointed out.  相似文献   

11.
The recent development of atomic resolution, low dose-rate electron microscopy allows investigating 2D materials as well as catalytic nano particles without compromising their structural integrity. For graphene and a variety of nanoparticle compositions, it is shown that a critical dose rate exists of <100 e2 s at 80 keV of electron acceleration that allows maintaining the genuine object structures including their surfaces and edges even if particles are only 3 nm large or smaller. Moreover, it is demonstrated that electron beam-induced phonon excitation from outside the field of view contributes to a contrast degradation in recorded images. These degradation effects can be eliminated by delivering electrons onto the imaged area, only, by using a Nilsonian illumination scheme in combination with a suitable aperture at the electron gun/monochromator assembly.  相似文献   

12.
The morphology of TiO2(110)-(1 × 1) supported Cu particles has been investigated by Fourier Transform Reflection Absorption Infrared Spectroscopy (FT-RAIRS), employing adsorbed CO as a probe molecule sensitive to local surface structure. For Cu coverage (deposited at 300 K) less than 2.85 MLE nucleated Cu particles in the range 2 nm–4 nm are formed, as indicated by a final state shift in the core level Cu(2p3/2) binding energy and by the existence of only transmission bands in the FT-RAIRS spectra for adsorbed CO. νS(CO) indicates that these small particles expose sites similar to those of the stepped Cu surfaces Cu(211), Cu(311), and Cu(755). At Cu coverages in the range of 6 MLE and above, corresponding to particle sizes above 4.6 nm, νS(CO) indicates the predominance of (110), (100) and (111) adsorption sites. Annealing the Cu layers to 650 K results in the slight growth of the particle sizes, and transformation of the CO adsorption sites corresponding to the close packed facets. The transformation of the local dielectric from that of titania to that dominated by the Cu particle is shown to take place between 3.7 and 4.2 nm, and this change is also to a smaller extent sensitive to the dispersion of the particles.  相似文献   

13.
The electrostatic precipitator (ESP) has been extensively used for collecting aerosol particles emitted from coal combustion, but its collection efficiency of PM2.5 (Particulate matter whose aerodynamic diameter is less than 2.5 μm) is relatively low due to insufficient particle charging. The positive pulsed ESP is considered to enhance particle charging and improve collection efficiency. A laboratory-scale pulsed ESP with wire-plate electrode configuration was established to investigate the particle charging and penetration efficiency under controlled operating conditions of different applied impulse peak voltages, impulse frequencies, dust loadings and residence times. The results show that most particles larger than 0.2 μm are negatively charged, while most particles smaller than 0.2 μm are positively charged. For a given operating condition, the particle penetration efficiency curve has the highest penetration efficiency for particles with a diameter near 0.2 μm, and there is always a negative correlation between the particle penetration efficiency and the average number of charges per particle. Under the same operating conditions, the particle penetration efficiency decreases with increasing impulse peak voltage and impulse frequency, but increases as the dust loading increases. The results imply that residence time of 4 s is optimum for particle charging and collection. PM2.5 number reduction exceeding 90% was achieved in our pulsed ESP.  相似文献   

14.
The results of the numerical analysis of heat- and mass-transfer processes at powder particles' motion in a gas flow and laser beam by light-propulsion force during the laser cladding and direct material deposition are presented. Under consideration were the stainless steel particles, the radiation power range of the CO2 laser were 1000, 3000 and 5000 W. Finally, the particles of 45 μm in diameter reach the maximum velocity of about 80, 220, 280 m/s. It is shown that as particles are heated by the laser up to the temperature approaching the boiling point, the particles' velocity in the light field by the vapor recoil pressure may increase significantly. The radius of the particles slightly varies due to the evaporation; the losses in the clad material mass are negligibly small. Comparisons of numerical results with known experimental data on light-propulsion acceleration of single particles (aluminum, aluminum oxide and graphite) under the influence of pulse laser radiation are also presented. Particle acceleration resulting from the laser evaporation depends on the particle diameter, powder material properties, focusing degree and attenuation laser beam intensity by the direction of its propagation.  相似文献   

15.
Magnetic domain structures in two 50 nm thick chemically-ordered FePd (0 0 1) epitaxial films with different perpendicular anisotropies have been studied using Lorentz microscopy. Domain and domain wall structures vary significantly according to the magnitude of the anisotropy. For lower anisotropy films, a stripe domain structure with a period of ≈100 nm is formed in which there is a near-continuous variation in orientation of the magnetisation vector. By contrast, in the film with higher anisotropy, a maze-like domain structure is supported. The magnetisation within domains is perpendicular to the film plane and adjacent domains are separated by narrow walls, less than 20 nm wide. Micromagnetic modelling is generally in good quantitative agreement with experimental observations and provides additional information on the domain wall structure.  相似文献   

16.
A line tunable singly resonant noncritically phase matched narrow band width ZnGeP2 (ZGP) optical parametric oscillator pumped by the output idler radiation from a KTA OPO based on a 20 mm long KTA crystal pumped from a Q-switched Gaussian shaped Nd:YAG laser beam with a grating having grooves density 85 lines/mm has been demonstrated in the spectral ranges of 3–7 μm. The measured threshold of oscillation energy was 10 μJ. The conversion efficiency was 20.5% and slope efficiency of the ZGP OPO was 20% using a 23 mm long ZGP crystal at 26 mm cavity length. Line width of the generated infrared radiation from ZGP OPO was 37–60 nm.  相似文献   

17.
Glassy carbon particles (millimetric or micrometric sizes) dispersions in water were treated by ultrasound at 20 kHz, either in a cylindrical reactor, or in a “Rosette” type reactor, for various time lengths ranging from 3 h to 10 h. Further separations sedimentation allowed obtaining few nanoparticles of glassy carbon in the supernatant (diameter <200 nm). Thought the yield of nanoparticle increased together with the sonication time at high power, it tended to be nil after sonication in the cylindrical reactor. The sonication of glassy carbon micrometric particles in water using “Rosette” instead of cylindrical reactor, allowed preparing at highest yield (1–2 wt%), stable suspensions of carbon nanoparticles, easily separated from the sedimented particles. Both sediment and supernatant separated by decantation of the sonicated dispersions were characterized by laser granulometry, scanning electron microscopy, X-ray microanalysis, and Raman and infrared spectroscopies. Their multiscale organization was investigated by transmission electron microscopy as a function of the sonication time. For sonication longer than 10 h, these nanoparticles from supernatant (diameter <50 nm) are aggregated. Their structures are more disordered than the sediment particles showing typical nanometer-sized aromatic layer arrangement of glassy carbon, with closed mesopores (diameter ∼3 nm). Sonication time longer than 5 h has induced not only a strong amorphization (subnanometric and disoriented aromatic layer) but also a loss of the mesoporous network nanostructure. These multi-scale organizational changes took place because of both cavitation and shocks between particles, mainly at the particle surface. The sonication in water has induced also chemical effects, leading to an increase in the oxygen content of the irradiated material together with the sonication time.  相似文献   

18.
Fluctuations on the electrical conductivity of polycrystalline YBa2Cu3O7?δ + xBaZrO3 (x = 1.0, 2.5, 5.0 and 10.0 wt.%) superconductors were investigated from the resistivity vs. temperature data for zero field and 8 T (Tesla) external magnetic fields. Attempts have been made to identify the optimum inclusion of BaZrO3 (BZO) in YBa2Cu3O7?δ (YBCO) superconductors. The phase formation, texture and grain alignments were analyzed by XRD and SEM techniques. Then the effects of superconducting fluctuations on the electrical conductivity of granular composite superconductors were studied for zero field and 8 T external magnetic fields. Though inclusions of BZO sub-micron particles are not expected to influence superconducting order-parameter fluctuation (SCOPF) much, the transition from 2D to 3D of the order parameter in the mean-field region depends on the BZO content in the composites. It has been observed that BZO residing at the grain boundary of YBCO matrix influences the tailing region without having significant change in the mean-field critical temperature. In the present work, attention has been focused mostly in the experimental domain relatively above the Tc. It reveals that, 1 wt.% composite exhibits a better superconducting property in comparison with pure YBCO.  相似文献   

19.
For a better understanding of the complex processes involved in slow pyrolysis of thermally thick wood particles it is essential to know the composition of the gaseous mixture leaving the pyrolyzing particle. In this work the volatiles in the pyrolysis product gas are characterized by means of in situ Laser-Induced Fluorescence. The results indicate that there are secondary heterogeneous cracking reactions of the primary and secondary tar species occurring in spherical beech wood particles with 25 mm diameter at conversions higher than approximately 0.6 and at heating rates of 0.3 K/s and 0.2 K/s. For pyrolysis of smaller beech wood particles of 0.5–1 mm size complete conversion was achieved without indications of secondary reactions at a heating rate of 0.3 K/s. In order to correctly model the composition of the gas mixture leaving a pyrolyzing wood particle, it may therefore be necessary to consider intra-particle heterogeneous cracking reactions.  相似文献   

20.
The synergy of ultrasonication and the exposure to light radiation was found to be necessary in the formation of nanocomposites of silver and a protease alpha chymotrypsin. The reaction was carried out in aqueous medium and the process took just less than 35 min. Ultrasonication alone formed very negligible number of nanoparticles of <100 nm size whereas light alone produced enough number but the size of the particles was >100 nm.The effects of pH (in the range of 3–5, 9–10), ultrasonication time periods (0–30 min), ultrasonication intensity (33–83 W cm?2), energy of light radiation (short UV, long UV and Fluorescent light) and time period of exposure (5–60 min) to different light radiations were studied.The formation of nanocomposites under these effects was followed by surface plasmon resonance (SPR) spectra, dynamic light scattering (DLS), transmission electron microscopy (TEM). Ag–chymotrypsin nanocomposites of sizes ranging from 13 to 72 nm were formed using the synergy of ultrasonication and exposure to short UV radiation. Results show that ultrasonication promoted nuclei formation, growth and reduction of polydispersity by Ostwald ripening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号