首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, a new chaos-based partial image encryption scheme based on Substitution-boxes (S-box) constructed by chaotic system and Linear Fractional Transform (LFT) is proposed. It encrypts only the requisite parts of the sensitive information in Lifting-Wavelet Transform (LWT) frequency domain based on hybrid of chaotic maps and a new S-box. In the proposed encryption scheme, the characteristics of confusion and diffusion are accomplished in three phases: block permutation, substitution, and diffusion. Then, we used dynamic keys instead of fixed keys used in other approaches, to control the encryption process and make any attack impossible. The new S-box was constructed by mixing of chaotic map and LFT to insure the high confidentiality in the inner encryption of the proposed approach. In addition, the hybrid compound of S-box and chaotic systems strengthened the whole encryption performance and enlarged the key space required to resist the brute force attacks. Extensive experiments were conducted to evaluate the security and efficiency of the proposed approach. In comparison with previous schemes, the proposed cryptosystem scheme showed high performances and great potential for prominent prevalence in cryptographic applications.  相似文献   

2.
Problems such as insufficient key space, lack of a one-time pad, and a simple encryption structure may emerge in existing encryption schemes. To solve these problems, and keep sensitive information safe, this paper proposes a plaintext-related color image encryption scheme. Firstly, a new five-dimensional hyperchaotic system is constructed in this paper, and its performance is analyzed. Secondly, this paper applies the Hopfield chaotic neural network together with the novel hyperchaotic system to propose a new encryption algorithm. The plaintext-related keys are generated by image chunking. The pseudo-random sequences iterated by the aforementioned systems are used as key streams. Therefore, the proposed pixel-level scrambling can be completed. Then the chaotic sequences are utilized to dynamically select the rules of DNA operations to complete the diffusion encryption. This paper also presents a series of security analyses of the proposed encryption scheme and compares it with other schemes to evaluate its performance. The results show that the key streams generated by the constructed hyperchaotic system and the Hopfield chaotic neural network improve the key space. The proposed encryption scheme provides a satisfying visual hiding result. Furthermore, it is resistant to a series of attacks and the problem of structural degradation caused by the simplicity of the encryption system’s structure.  相似文献   

3.
孙福艳  刘树堂  吕宗旺 《中国物理》2007,16(12):3616-3623
In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. This paper proposes a new approach for image encryption based on a high-dimensional chaotic map. The new scheme employs the Cat map to shuffle the positions, then to confuse the relationship between the cipher-image and the plain-image using the high-dimensional Lorenz chaotic map preprocessed. The results of experimental, statistical analysis and key space analysis show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.  相似文献   

4.
Nowadays, it is increasingly necessary to improve the encryption and secure transmission performance of images. Therefore, in this paper, a bit-level permutation algorithm based on hyper chaos is proposed, with a newly constructed 5-D hyperchaotic system combined with DNA sequence encryption to achieve bit-wide permutation of plaintexts. The proposed 5-D hyperchaotic system has good chaotic dynamics, combining hyperchaotic sequence with bit-level permutation to enhance the pseudo-randomness of the plaintext image. We adopt a scheme of decomposing the plaintext color image into three matrices of R, G, and B, and performing block operations on them. The block matrix was DNA encoded, operated, and decoded. The DNA operation was also determined by the hyperchaotic sequence, and finally generated a ciphertext image. The result of the various security analyses prove that the ciphertext images generated by the algorithm have good distribution characteristics, which can not only resist differential attacks, but also have the advantages of large cryptographic space.  相似文献   

5.
Chaos is considered as a natural candidate for encryption systems owing to its sensitivity to initial values and unpredictability of its orbit. However, some encryption schemes based on low-dimensional chaotic systems exhibit various security defects due to their relatively simple dynamic characteristics. In order to enhance the dynamic behaviors of chaotic maps, a novel 3D infinite collapse map (3D-ICM) is proposed, and the performance of the chaotic system is analyzed from three aspects: a phase diagram, the Lyapunov exponent, and Sample Entropy. The results show that the chaotic system has complex chaotic behavior and high complexity. Furthermore, an image encryption scheme based on 3D-ICM is presented, whose security analysis indicates that the proposed image encryption scheme can resist violent attacks, correlation analysis, and differential attacks, so it has a higher security level.  相似文献   

6.
A one-time pad image encryption scheme based on physical random numbers from chaotic laser is proposed and explored. The experimentally generated physical random numbers serving as the encryption keys are constructed into two random sequence image matrices, which are applied to shuffle the pixel position of the original image and change its pixel value, respectively. Some tests including statistical analysis, sensitivity analysis, and key space analysis are performed to assess reliability and efficiency of the image encryption scheme. The experimental results show that the image encryption scheme has high security and good anti-attack performance.  相似文献   

7.
In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques, but the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. In this paper, permutation and substitution methods are incorporated to present a stronger image encryption algorithm. Spatial chaotic maps are used to realize the position permutation, and to confuse the relationship between the cipher-image and the plain-image. The experimental results demonstrate that the suggested encryption scheme of image has the advantages of large key space and high security; moreover, the distribution of grey values of the encrypted image has a random-like behavior. Supported by the National Natural Science Foundation of China (Grant No. 60874009) and the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200444)  相似文献   

8.
This paper proposes a novel image encryption scheme based on the improved hyperchaotic sequences. Firstly, the hyperchaotic sequences are modified to generate chaotic key stream that is more suitable for image encryption. Secondly, the final encryption key stream is generated by correlating the chaotic key stream and plaintext which result in both key sensitivity and plaintext sensitivity. The scheme can achieve high key sensitivity and high plaintext sensitivity through only two rounds diffusion operation. The performance test and security analysis has been performed using the histograms, correlation coefficients, information entropy, peak signal-to-noise ratio, key sensitivity analysis, differential analysis, key space analysis, decryption quality and speed analysis. Results suggest that the proposed image encryption scheme is secure and reliable, with high potential to be adopted for the secure image communication applications.  相似文献   

9.
Symmetric encryption is appraised as one of the key ways in which end-to-end data transfer security is guaranteed. To inject confusion in the substitution phase of the modern block encryption system, substitution boxes are utilized. The design of the S-box possesses a high influence on the strength and sturdiness of modern block encryption systems. In this document, we propose to introduce an efficient methodology of creating highly non-linear cryptographic substitution boxes as an alternate to chaotic, or algebraic construction methods. Particle Swarm Optimization is utilized in the construction of highly non-linear S-boxes, in the projected technique the initial population is randomly produced, and the position vector of particles is used in generating S-boxes. Performance appraisal of the constructed S-boxes is confirmed by standard criteria. To assess their appropriateness and their application for encryption, an image encryption scheme of the projected S-boxes is correspondingly suggested, the proposed cryptosystem is evaluated against different standard security analysis tests. The results show that the Proposed S-boxes based cryptosystem bearing strong immunity against various cryptographic attacks.  相似文献   

10.
Digital images can be large in size and contain sensitive information that needs protection. Compression using compressed sensing performs well, but the measurement matrix directly affects the signal compression and reconstruction performance. The good cryptographic characteristics of chaotic systems mean that using one to construct the measurement matrix has obvious advantages. However, existing low-dimensional chaotic systems have low complexity and generate sequences with poor randomness. Hence, a new six-dimensional non-degenerate discrete hyperchaotic system with six positive Lyapunov exponents is proposed in this paper. Using this chaotic system to design the measurement matrix can improve the performance of image compression and reconstruction. Because image encryption using compressed sensing cannot resist known- and chosen-plaintext attacks, the chaotic system proposed in this paper is introduced into the compressed sensing encryption framework. A scrambling algorithm and two-way diffusion algorithm for the plaintext are used to encrypt the measured value matrix. The security of the encryption system is further improved by generating the SHA-256 value of the original image to calculate the initial conditions of the chaotic map. A simulation and performance analysis shows that the proposed image compression-encryption scheme has high compression and reconstruction performance and the ability to resist known- and chosen-plaintext attacks.  相似文献   

11.
Based on complex Chen and complex Lorenz systems, a novel color image encryption algorithm is proposed. The larger chaotic ranges and more complex behaviors of complex chaotic systems, which compared with real chaotic systems could additionally enhance the security and enlarge key space of color image encryption. The encryption algorithm is comprised of three step processes. In the permutation process, the pixels of plain image are scrambled via two-dimensional and one-dimensional permutation processes among RGB channels individually. In the diffusion process, the exclusive-or (XOR for short) operation is employed to conceal pixels information. Finally, the mixing RGB channels are used to achieve a multilevel encryption. The security analysis and experimental simulations demonstrate that the proposed algorithm is large enough to resist the brute-force attack and has excellent encryption performance.  相似文献   

12.
Lü H  Wang S  Li X  Tang G  Kuang J  Ye W  Hu G 《Chaos (Woodbury, N.Y.)》2004,14(3):617-629
A one-way-coupled chaotic map lattice is proposed for cryptography of self-synchronizing stream cipher. The system performs basic floating-point analytical computation on real numbers, incorporating auxiliarily with few simple algebraic operations on integer numbers. Parallel encryption (decryption) operations of multiple chaotic sites are conducted. It is observed that the system has high practical security, fast encryption (decryption) speed with software realization, and excellent reliability against strong channel noise, and its overall cryptographic properties are considerably better than both known chaotic cryptosystems and currently used conventional cryptosystems, including the advanced encryption standard.  相似文献   

13.
基于无线传感器网络的混合混沌新分组加密算法   总被引:2,自引:0,他引:2       下载免费PDF全文
佟晓筠  左科  王翥 《物理学报》2012,61(3):30502-030502
针对无线传感器网络(WSNS)中节点配备的能源少、节点计算能力低、存储资源 有限以及传统的加密方法不适用于WSNS中等问题, 提出了一种新的基于动态迭代的混合混沌方程及其整型数值化方法, 并结合Feistel网络结构设计了一种快速、安全且资源消耗低的适用于WSNS节点的分组加密算法. 通过对混合混沌分组加密算法进行了大量的实验测试之后, 发现该算法具有密钥空间大、严格的雪崩效应、扩散及扰乱性高以及均等的统计平衡性等优点, 同时该算法还成功地通过了SP800-22的严格测试; 算法经过仿真器平台上运行的速度、时间及所占存储空间的测试分析, 结果表明设计的混合混沌分组加密算法是完全能够适用于WSNS节点的数据加密.  相似文献   

14.
In recent years, a large number of discrete chaotic cryptographic algorithms have been proposed. However, most of them encounter some problems such as lack of robustness and security. In this paper, we introduce a new image encryption algorithm based on eight-dimensional (nonlinear) chaotic cat map. Encryption of image is different from that of texts due to some intrinsic features of image such as bulk data capacity and high redundancy, which are generally difficult to handle by traditional methods. In traditional methods the key space is small and the security is weak. The proposed algorithm tries to address these problems and also tries to enhance the encryption speed. In this paper an eight dimensional chaotic cat map is used to encrypt the intensity values of pixels using lookup table method thereby significantly increasing the speed and security of encryption. The proposed algorithm is found to be resistive against chosen/known-plaintext attacks, statistical and differential attacks.  相似文献   

15.
Despite that many image encryption systems based on chaotic or hyperchaotic systems have been proposed to protect different kinds of information, it has been crucial to achieve as much security as possible in such systems. In this sense, we numerically implement a known image encryption system with some variants, making special emphasis when two operations are considered in the scrambling stage. The variants of such an encryption system are based on some hyperchaotic systems, which generated some substitution boxes and the keys of the system. With the aim to have a more complete evaluation, some internal stages of the image encryption scheme have been evaluated by using common statistical tests, and also the scaling behavior of the encrypted images has been calculated by means of a two-dimensional detrended fluctuation analysis (2D-DFA). Our results show that the image encryption systems that include two operations or transformations in the scrambling stage present a better performance than those encryption systems that consider just one operation. In fact, the 2D-DFA approach was more sensitive than some common statistical tests to determine more clearly the impact of multiple operations in the scrambling process, confirming that this scaling method can be used as a perceptual security metric, and it may contribute to having better image encryption systems.  相似文献   

16.
A chaotic system refers to a deterministic system with seemingly random irregular motion, and its behavior is uncertain, unrepeatable, and unpredictable. In recent years, researchers have proposed various image encryption schemes based on a single low-dimensional or high-dimensional chaotic system, but many algorithms have problems such as low security. Therefore, designing a good chaotic system and encryption scheme is very important for encryption algorithms. This paper constructs a new double chaotic system based on tent mapping and logistic mapping. In order to verify the practicability and feasibility of the new chaotic system, a displacement image encryption algorithm based on the new chaotic system was subsequently proposed. This paper proposes a displacement image encryption algorithm based on the new chaotic system. The algorithm uses an improved new nonlinear feedback function to generate two random sequences, one of which is used to generate the index sequence, the other is used to generate the encryption matrix, and the index sequence is used to control the generation of the encryption matrix required for encryption. Then, the encryption matrix and the scrambling matrix are XORed to obtain the first encryption image. Finally, a bit-shift encryption method is adopted to prevent the harm caused by key leakage and to improve the security of the algorithm. Numerical experiments show that the key space of the algorithm is not only large, but also the key sensitivity is relatively high, and it has good resistance to various attacks. The analysis shows that this algorithm has certain competitive advantages compared with other encryption algorithms.  相似文献   

17.
With the massive application of IoT and sensor technologies, the study of lightweight ciphers has become an important research topic. In this paper, an effective lightweight LZUC (lightweight Zu Chongzhi) cipher based on chaotic system is proposed to improve the traditional ZUC algorithm. In this method, a further algorithm is designed for the process of integrating chaos into the lightweighting of ZUC. For the first time, this design introduces the logistic chaotic system into both the LFSR (linear feedback shift register) and nonlinear F-function of the cryptographic algorithm. The improved LZUC algorithm not only achieves a certain effect in lightweighting, but also has good statistical properties and security of the output sequence. To verify the performance of the LZUC cipher, we performed NIST statistical tests and information entropy analysis on its output key streams and discussed the typical attacks on the algorithm’s resistance to weak key analysis, guess–determination analysis, time–stored data trade-off analysis, and algebraic analysis. In addition, we completed the design of an image security system using the LZUC cipher. Histogram analysis and correlation analysis are used to analyze both plaintext and ciphertext data. At the end of the article, the plaintext and ciphertext images displayed by LCD can be further visualized to verify the encryption effectiveness of the LZUC cipher.  相似文献   

18.
浩明 《应用光学》2014,35(3):420-426
为了有效改进图像加密效果及其安全性,在对基于混沌系统及位运算的图像加密算法进行研究的基础上,提出基于组合混沌和位运算的图像加密算法,算法先对灰度图像进行位平面分解,考虑到图像的高四位含有较大的信息量,对高四位分别进行置乱变换,再与低四位构成一个整体进行置乱变换,然后组合置乱后的位平面,并与二值矩阵进行异或运算得到密文图像。实验结果表明,与像素位置置换算法和二维数据加密算法比较,改进算法具有更好的加密效率,密钥空间接近2192,具有较好的安全性,且能较好地抵御椒盐噪声和高斯噪声攻击,有效恢复出原始图像。  相似文献   

19.
A hybrid domain image encryption algorithm is developed by integrating with improved Henon map, integer wavelet transform (IWT), bit-plane decomposition, and deoxyribonucleic acid (DNA) sequence operations. First, we improve the classical two-dimensional Henon map. The improved Henon map is called 2D-ICHM, and its chaotic performance is analyzed. Compared with some existing chaotic maps, 2D-ICHM has larger parameter space, continuous chaotic range, and more complex dynamic behavior. Second, an image encryption structure based on diffusion–scrambling–diffusion and spatial domain–frequency domain–spatial domain is proposed, which we call the double sandwich structure. In the encryption process, the diffusion and scrambling operations are performed in the spatial and frequency domains, respectively. In addition, initial values and system parameters of the 2D-ICHM are obtained by the secure hash algorithm-512 (SHA-512) hash value of the plain image and the given parameters. Consequently, the proposed algorithm is highly sensitive to plain images. Finally, simulation experiments and security analysis show that the proposed algorithm has a high level of security and strong robustness to various cryptanalytic attacks.  相似文献   

20.
Image encryption with chaotically coupled chaotic maps   总被引:1,自引:0,他引:1  
We present a novel secure cryptosystem for direct encryption of color images, based on chaotically coupled chaotic maps. The proposed cipher provides good confusion and diffusion properties that ensures extremely high security because of the chaotic mixing of pixels’ colors. Information is mixed and distributed over a complete image using a complex strategy that makes known plaintext attack unfeasible. The encryption algorithm guarantees the three main goals of cryptography: strong cryptographic security, short encryption/decryption time, and robustness against noise and other external disturbances. Due to the high speed, the proposed cryptosystem is suitable for application in real-time communication systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号