首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonlinear optical properties of Sudan I were investigated by a single beam Z-scan technique. The Sudan I ethanol solution exhibited large nonlinear refractive indices under both CW and pulse laser excitations. The nonlinear refractive indices of Sudan I were in the order of ?10?8 cm2/W under CW 633 nm excitation and ?10?6 cm2/W under CW 488 nm excitation, respectively. Under the excitation of a pulse 532 nm laser, the nonlinear refractive index n2 was calculated to be 1.19 × 10?14 cm2/W. It was discussed that the mechanism accounting for the process of nonlinear refraction was attributed to the laser heating for the CW laser excitation and the electronic effect for the pulse excitation. Moreover, the second hyperpolarizability of Sudan I was also estimated in this paper.  相似文献   

2.
A class of organic compounds namely propylidene aryloxy acet hydrazide derivatives were synthesized. The third-order nonlinear optical properties and optical limiting studies of the compounds were investigated using the single beam Z-scan technique at 532 nm. The Z-scan study reveals that the compounds exhibit a self-defocusing effect at 532 nm. The calculated values of nonlinear refractive index, third-order nonlinear optical susceptibility and second order molecular hyperpolarizability are of the order of 10?11 esu, 10?13 esu and 10?31 esu, respectively. The compounds exhibit good optical limiting properties at the wavelength used.  相似文献   

3.
We show the formation of ultraslow bright and dark optical solitons in a cascade-type three-level system of GaAs/AlGaAs multiple quantum wells (MQWs) structure based on the biexciton coherence in the transient optical response, and study analytically and numerically with Maxwell–Schrödinger equations. The calculated velocity of bright and dark optical solitons are Vg = 2.7 × 104 ms? 1 and Vg = 8.91 × 104 ms? 1, respectively. Such investigation of ultraslow optical solitons in MQWs may provide practical applications such as high-fidelity optical delay lines and optical buffers in semiconductor quantum wells structure, because of its flexible design.  相似文献   

4.
A novel organometallic compound, ethyltriphenylphosphonium bis(2-thioxo-1,3-dithiole-4,5-dithiolato)aurate (III), abbreviated as TPEPADT, was synthesized. The TPEPADT doped poly(methyl methacrylate) (PMMA) thin film with a mass fraction of 1% (1 wt.%) was prepared by using a spin-coating method. The third-order nonlinear optical properties of TPEPADT in acetonitrile solution and TPEPADT-doped PMMA thin film were investigated by using the laser Z-scan technique at the wavelength 1064 nm with laser duration of 20 ps. The linear refractive index of the polymer thin film was also studied. The Z-scan curves revealed that both TPEPADT in acetonitrile solution and the polymer thin film possessed negative nonlinear refraction, exhibiting a self-defocusing effect and nonlinear absorption was negligible under the experimental conditions used. The nonlinear refractive index was calculated to be ?1.9 × 10?18 m2/W for TPEPADT in acetonitrile solution and ?8.9 × 10?15 m2/W for the polymer thin film. These results suggest that TPEPADT have potential for the application of all-optical switching devices.  相似文献   

5.
In this work, the 70GeS2–20In2S3–10CsI glass introduced with 0–10 mol% Ag2S were prepared by the vacuumed melt-quenching technique. The physicochemical properties, such as glass transition temperature, density, refractive index, transmittance, hardness as well as third-order nonlinearity are investigated with the increasing Ag2S contents. It was found that the refractive index (@632.8 nm), density, and hardness of glasses increase distinctly from 2.204 to 2.270, from 3.520 to 3.675 g cm−3 and from 180.9 to 227.9 kg mm−2, respectively. Meanwhile, the nonlinear refractive index increases from 3.2 × 10−18 to 4.6 × 10−18 m2/W due to the increased refractive index. Finally, the Raman spectra are performed to structurally illustrate the role of Ag addition on the changes of the physicochemical properties. With the Ag2S contents increasing, the vibration intensity of the [InS4] and [InS3I] tetrahedrons increases and the heavy Ag atoms result in the increased density and refractive index, as well as the nonlinear refractive index. The Ag-containing glass, which exhibited good thermal stability, excellent infrared transparency and ultrafast nonlinear optical properties, can be find applications for the IR window material or ultrafast infrared optics.  相似文献   

6.
We propose refractive index sensors based on Ag-metalized nanolayer in microstructured optical fibers. The surface plasmon resonance modes and the sensing properties are theoretically analyzed using finite element method (FEM). In the calculation, Drude–Lorentz model is used to describe the Metal Dielectric constant. The calculation results show that the sensitivity of Ag-metalized SPR sensor can reach 1500 nm/RIU corresponding to a resolution of 6.67 × 10?5 RIU. Comparing with conventional detecting material-Au under the same structure, the sensitivity and 3 dB bandwidth of our device are better.  相似文献   

7.
A novel surface plasmon-polaritons (SPPs) refractive index sensor based on tooth-shaped metal–insulator–metal structure is proposed and numerically simulated by using the finite difference time domain method with perfectly matched layer absorbing boundary condition. Both analytic and simulated results show that the transmission minima wavelengths in the transmitted spectrum of the sensor have a linear relationship with the refractive index of material under sensing. Based on the relationship, the refractive index of the material can be obtained from the detection of one of the transmission minima wavelengths in the transmitted spectrum. The resolution of refractive index of the nanometeric sensor can reach as high as 10? 6, given the wavelength resolution of 0.01 nm. It could be applied to high-resolution biological sensing.  相似文献   

8.
Amorphous Si/SiO2(a-Si/SiO2) superlattices have been fabricated by the magnetron sputtering technique. The superlattice with an Si layer thickness of 1.8 nm has been characterized by transmission electron microscopy (TEM). The result indicates that most of the regions in the Si layer consist of amorphous phase, while regular structure appears in some local regions. This is in agreement with the Raman scattering spectroscopy. The optical absorption spectrum and photoluminescence (PL) spectrum have been measured. Moreover, the third-order optical nonlinearity χ(3)of this superlattice has been measured. To our knowledge, this is the first investigation of the nonlinear absorption and refractive index of an a-Si/SiO2superlattice using the Z -scan technique. The real and imaginary parts of χ(3)have been found to be 1.316  ×  10  7eus and   5.596  ×  10  7eus, respectively, which are about two orders of magnitude greater than those of porous silicon. The results may be attractive for potential application in electro-optics devices.  相似文献   

9.
We propose a special refractive index sensor design based on a photonic crystal fiber. Two analyte channels are introduced, with one analyte channel coated with gold layer and the other one without gold layer. A hybrid resonance method is used in the sensor to achieve a large dynamic index range, where surface plasmon resonance occurs when the analyte index is lower than that of the fiber material, while the core mode couples with the resonant mode of the adjacent analyte-filled cylinder when the analyte index is larger than the fiber material. When considering fluorinated polymer fibers, a broad index range of analyte refractive index from 1.25 to 1.45 with high sensitivity can be achieved. The maximal sensitivities reach 1.4 × 104 nm/RIU and 2.7 × 104 nm/RIU respectively when refractive index is in the range of 1.25 to 1.383 and 1.383 to 1.45. The sensor characteristics, make this simple sensor very interesting for detecting a wide range of fluid's refractive index or chemical agent concentration.  相似文献   

10.
Third order nonlinear refractive index of three anthraquinone dyes, i.e., Solvent Blue 59, Solvent Blue 35 and Solvent Green 3 doped in 1294-1b nematic liquid crystal (NLC) were studied by the single beam Z-scan technique using a continuous-wave He–Ne laser at 632.8 nm. The negative nonlinear refractive index (n2) in the order of 10? 5 cm2/w for all samples was obtained. We believe that, this large nonlinearity is owing to Janossy effect and the difference in the nonlinear refractive index of our dyes can be described by the structures of dyes and the interactions between dyes and 1294-1b molecules. So as to understand the effect of dye structure on nonlinearity enhancement, the dichroic ratio of these dyes in 1294-1b was measured using polarized spectroscopy.  相似文献   

11.
We have investigated the structural and optical properties of bulk GaTe crystal grown by vertical Bridgman method. Two photon absorption (TPA) properties of GaTe crystal have been investigated by the open aperture Z-scan technique under 1064 nm wavelength with 4 ns or 65 ps pulse durations. The TPA coefficients are greater in ns regime than that of ps regime. Upon increasing intensity of incident light from 5.02×107 W/cm2 to 1.07×108 W/cm2, the TPA coefficients increased from 3.47×10?6 cm/W to 8.53×10?6 cm/W for nanosecond excitation. Similarly, when intensity of incident light was increased from 6.81×108 W/cm2 to 9.94×108 W/cm2 the TPA coefficients increased from 3.53×10?7 cm/W to 6.83×10?7 cm/W for picosecond excitation. Measured TPA coefficient of GaTe crystal is larger than that of GaSe and GaS layered crystals.  相似文献   

12.
In the present work, we introduce an optical method to characterize opaque samples. The technique combines low coherence interferometry with a ring configuration. This set-up, let us to obtain the thickness of the sample and the topography of both faces simultaneously by measuring the optical path difference with a reference arm. Experimental results in metal gauge blocks up to 1 mm are shown. A resolution better than 5 μm was obtained.  相似文献   

13.
We have studied the electrical and optical properties of Cu–Al–O films deposited on silicon and quartz substrates by using radio frequency (RF) magnetron sputtering method under varied oxygen partial pressure PO. The results indicate that PO plays a critical role in the final phase constitution and microstructure of the films, and thus affects the electrical resistivity and optical transmittance significantly. The electrical resistivity increases with the increase of PO from 2.4 × 10?4 mbar to 7.5 × 10?4 mbar and afterwards it decreases with further increasing PO up to 1.7 × 10?3 mbar. The optical transmittance in visible region increases with the increase of PO and obtains the maximum of 65% when PO is 1.7 × 10?3 mbar. The corresponding direct band gap is 3.45 eV.  相似文献   

14.
Four different lipases were compared for ultrasound-mediated synthesis of the biodegradable copolymer poly-4-hydroxybutyrate-co-6-hydroxyhexanoate. The copolymerization was carried out in chloroform. Of the enzymes tested, Novozym 435 exhibited the highest copolymerization rate, in fact the reaction rate was observed to increase with about 26-fold from 30 to 50 °C (7.9 × 10?3 M s?1), sonic power intensity of 2.6 × 103 W m?2 and dissipated energy of 130.4 J ml?1. Copolymerization rates with the Candida antarctica lipase A, Candida rugosa lipase, and Lecitase Ultra? were lower at 2.4 × 10?4, 1.3 × 10?4 and 3.5 × 10?4 M s?1, respectively. The catalytic efficiency depended on the enzyme. The efficiency ranged from 4.15 × 10?3 s?1 M?1 for Novozym 435–1.48 × 10?3 s?1 M?1 for C. rugosa lipase. Depending on the enzyme and sonication intensity, the monomer conversion ranged from 8.2% to 48.5%. The sonication power, time and temperature were found to affect the rate of copolymerization. Increasing sonication power intensity from 1.9 × 103 to 4.5 × 103 W m?2 resulted in an increased in acoustic pressure (Pa) from 3.7 × 108 to 5.7 × 108 N m?2 almost 2.4–3.7 times greater than the acoustic pressure (1.5 × 108 N m?2) that is required to cause cavitation in water. A corresponding acoustic particle acceleration (a) of 9.6 × 103–1.5 × 104 m s?2 was calculated i.e. approximately 984–1500 times greater than under the action of gravity.  相似文献   

15.
K. Russel Raj  P. Murugakoothan 《Optik》2012,123(12):1082-1086
Single crystals of semiorganic material 3-aminophenol orthophosphoric acid (denoted as 3-amphph) of size 29 × 17 × 4 mm3 have been grown by the slow evaporation of an aqueous solution of deionized water at 50 °C. The crystal belongs to orthorhombic system with the non centrosymmetric space group P212121. The lattice parameter values of 3-amphph crystal are a = 4.481(2) Å, b = 9.782(4) Å and c = 18.326(4) Å. The grown crystals are subjected to single crystal XRD studies to identify its morphology and structure. Optical transmittance and second harmonic generation of the grown crystals have been studied by UV–Vis–NIR spectrum and Kurtz powder technique respectively. The transmittance of 3-amphph crystal has been used to calculate the refractive index n, the extinction coefficient k, reflectance R and both the real (?r) and imaginary (?i) components of the dielectric constant as a function of wavelength. The optical band gap of 3-amphph is 4.05 eV with direct transition. The anisotropic mechanical behavior of 3-amphph has been analyzed using Vickers microhardness test. The mechanism of growth is revealed by carrying out chemical etching using water as etchant.  相似文献   

16.
Organic single crystals of 4-methyl-3-nitrobenzoic acid (4M3N) have been grown by slow evaporation solution growth technique at room temperature. The single crystal X-ray diffraction study reveals that 4M3N crystallizes in monoclinic system with space group P21/n. The crystalline perfection of the crystal was analyzed by high resolution X-ray diffraction (HRXRD) measurements. The functional groups present in 4M3N have been identified from FT-IR and FT-Raman spectra. The lower cut-off wavelength of 4M3N is found to be 404 nm and the optical band gap is calculated as 2.91 eV. The refractive index shows normal behavior with wavelength. The physio chemical changes, decomposition and stability of the 4M3N compound were established by TG-DTA studies. Vickers microhardness measurement concludes that 4M3N belongs to soft material (n=2.5) category. The LDT value is found to be higher than that of KDP and some of the important organic NLO materials. The third order nonlinear refractive index and nonlinear absorption coefficient of the 4M3N have been measured by Z-scan studies. The imaginary and real parts of the third-order susceptibility values were determined as Im χ3=9.129×10−11 esu and Re χ3=1.4034×10−9 esu respectively. The dislocation density was calculated to be 3.0448×106 cm−2 which indicates the quality of the crystal.  相似文献   

17.
R.S. Kaler 《Optik》2012,123(18):1654-1658
In this paper, the 16 channel WDM systems at 10 Gb/s have been investigated for the various optical amplifiers and hybrid optical amplifiers and the performance has been compared on the basis of transmission distance and dispersion. The amplifiers EDFA and SOA have been investigated independently and further compared with hybrid optical amplifiers like RAMAN-EDFA and RAMAN-SOA. It is observed that hybrid optical amplifier RAMAN-EDFA provides the highest output power (12.017 and 12.088 dBm) and least bit error rate (10?40 and 9.08 × 10?18) at 100 km for dispersion 2 ps/nm/km and 4 ps/nm/km respectively.  相似文献   

18.
We propose and analyze a high effective Q-factor triangular ring resonator (TRR) coupled with an asymmetric Mach–Zehnder interferometer (AMZI), in which the long evanescent fields on a total internal reflection (TIR) mirror in the TRR and the field cancelation by the phase difference of each path in the AMZI are utilized. The TRR is employed in order to more effectively measure the quantities that occur during biological events because the evanescent field of the TIR mirror with its sharp incident angle is influenced by the Goos–Hänchen shift. In this paper, we report upon the AMZI-coupled TRR sensor structure with the high effective Q-factor of about 105 obtained through the optimization of the AMZI path-length. The sensitivity of the resonance shift when changing the refractive index of 1 × 10? 4 at the incidence angle of 22.92° has been identified to be as high as 0.48 × 104 nm/RIU. In addition, the power sensitivity of the AMZI-coupled TRR with a 17 dB attenuation is 5.7 × 105 dB/RIU.  相似文献   

19.
Undoped and Erbium (Er) doped zinc oxide (EZO) thin films were deposited on glass substrate by sol–gel method using spin coating technique with different doping concentration. EZO films were characterized using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), UV–VIS-NIR transmission and single beam z scan method under illumination of frequency doubled Nd:YAG laser. The deposited films were found to be well crystallized with hexagonal wurtzite structure having a preferential growth orientation along the ZnO (002) plane. A blue-shift was observed in the band gap of EZO films with increasing Er concentration. All the films exhibited a negative value of nonlinear refractive index (n2) at 532 nm which is attributed to the two photon absorption and weak free carrier absorption. Third order nonlinear optical susceptibility, χ(3) values of EZO films were observed in the remarkable range of 10? 6 esu. EZO (0.4 at.%) sample was found to be the best optical limiter with limiting threshold of 1.95 KJ/cm2.  相似文献   

20.
We report a high index contrast erbium doped tantalum pentoxide waveguide amplifier. 2.3 cm long waveguides with erbium concentration of 2.7 × 1020 cm? 3 were fabricated by magnetron sputtering of Er-doped tantalum pentoxide on oxidised silicon substrates and Ar-ion milling with photolithographically defined mask. A net on-chip optical gain of ~ 2.25 dB/cm at 1531.5 nm was achieved with 20 mW of pump power at 977 nm launched into the waveguide. The pump threshold for transparency was 4.5 mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号