首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Wenfang Xie 《Physics letters. A》2011,375(8):1213-1217
In this study, a detailed investigation of the nonlinear optical properties of the (D+,X) complex in a disc-like parabolic quantum dot has been carried out by using the matrix diagonalization method and the compact density-matrix approach. First, the numeric calculations and analysis of the oscillator strength of intersubband quantum transition from the ground state into the first excited state at the varying confinement frequency have been performed. Second, the linear, third-order nonlinear, and total absorption coefficients and refractive indices have been investigated. It is observed that the confinement frequency of QDs and the intensity of the illumination have drastic effects on the nonlinear optical properties. In addition, we find that all kinds of absorption coefficients and refractive indices of an exciton in QDs shift to lower energies and their peak values have considerably decreases induced by the impurity.  相似文献   

2.
Using the matrix diagonalization method and the compact density-matrix approach, we studied the combined effects of hydrostatic pressure and temperature on the electronic and optical properties of an exciton-donor complex in a disc-shaped quantum dot. We have calculated the binding energy and the oscillator strength of the intersubband transition from the ground state into the first excited state as a function of the dot radius. Based on the computed energies and wave functions, the linear, third-order nonlinear and total optical absorption coefficients as well as the refractive index have been examined. We find that the ground state binding energy and the oscillator strength are strongly affected by the quantum dot radius, hydrostatic pressure and temperature. The results also show that the linear, third-order nonlinear and total absorption coefficients and refractive index changes strongly depend on temperature and hydrostatic pressure.  相似文献   

3.
We have performed theoretical calculation of the nonlinear optical properties in a quantum well (QW) with the hyperbolic confinement potential. Calculation results reveal that the transition energy, oscillator strength, second-order nonlinear optical rectification (OR), geometric factor and nonlinear optical absorption (OA) are strongly affected by the parameters (α,σ) of the hyperbolic confinement potential. And an increment of the parameter α reduces all these physical quantities, while an increment of the parameter σ enhances them, but not for geometric factor. In addition, it is found that one can control the optical properties of QW by tuning these parameters.  相似文献   

4.
Spectral dependences of the total absorption cross sections in the region of the 1s ionization threshold of molecular nitrogen are determined for the first time with a high energy resolution using synchrotron radiation from the Russian-German channel of the BESSY II electron storage ring and continuous radiation from an x-ray tube. For N2, partial N1s absorption cross sections are derived and the oscillator strengths for the vibrational and Rydberg transition series are evaluated from the measurements carried out with due account of the background and instrumental distortions.  相似文献   

5.
A investigation of the linear and nonlinear optical properties of an exciton in a spherical parabolic quantum dot has been performed by using the matrix diagonalization method. The optical absorption coefficients between the ground state (L=0,π=+1) and the first excited state (L=1,π=-1) have been examined based on the computed energies and wave functions. The results are presented as a function of the incident photon energy for the different values of the incident optical intensity and the confinement strength. We found the optical absorption coefficient is strongly affected by the incident optical intensity and the confinement strength.  相似文献   

6.
Surprisingly, several experiments have reported that normal-incidence light absorption due to inter-conduction-subband transitions in direct-gap semiconductor quantum wells is as strong as in-plane-incidence absorption. In contrast to other models, a recent theoretical study claimed that a 14-bandk  pmodel including multiband coupling terms due toremote-conduction bandsis able to explain the experimental results. In this work, a concise formulation extends the model beyond 14 bands. Nevertheless, after rederiving the optical transition matrix elements, this analysis clearly shows that the oscillator strength for the in-plane polarized optical intersubband transition due to the multiband coupling effects is much smaller than the oscillator strength for the normal-to-plane polarized optical intersubband transition. These results indicate that the multiband coupling effects due to remote-conduction bands cannot cause a sufficient in-plane polarized optical intersubband transition to produce the observed normal-incidence absorption in the desirablen-type III–V compound semiconductor quantum wells.  相似文献   

7.
The structural and optical properties of as-deposited and γ-rays irradiated 2-(2,3-dihydro-1,5dimethyl-3-oxo-2-phenyl-1H-pyrazol-4-ylimino)-2-(4-nitrophenyl)acetonitrile (DOPNA) thin films have been reported. The structural properties of as-deposited and γ-rays irradiated DOPNA thin films are characterized by Fourier transformation infrared, X-ray diffraction and transmission electron microscope techniques. The transmittance, T(λ), and reflectance, R(λ), are measured at the normal incidence of light by a double beam spectrophotometer in the wavelength range 200-2200 nm. The refractive and absorption indices have been calculated. The dispersion parameters such as dispersion energy, oscillator energy and dielectric constant at high frequency are evaluated. The data of the absorption coefficient are analyzed in order to determine the type of inter-band electronic transitions and the optical band gap of the films. Other optical absorption parameters, namely, the extinction molar coefficient, oscillator strength and the electric dipole strength, are also calculated.  相似文献   

8.
In this study, a detailed investigation of the size effects of an exciton–acceptor complex in a disc-like quantum dot has been carried out by using the matrix diagonalization method and the compact density-matrix approach. We calculate the binding energy and the oscillator strength of intersubband quantum transition from the ground state into the first excited state as a function of the dot radius. Based on the computed energies and wave functions, the linear, third-order and total optical absorption coefficients as well as the refractive index have been examined between the ground and the first excited states. We find that the all absorption spectra and refractive index changes are strongly affected by the quantum dot size. However, for two cases of a smaller dot and a larger dot, the results of quantum size effects on the optical absorptions are opposite.  相似文献   

9.
In this work, a poly(o-toluidine) “POT” was synthesized by chemical oxidative polymerization method in aqueous media. High uniform and good adhesion thin films of POT have been successfully deposited by the spin coating technique. The films were characterized by X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectroscopy. The XRD pattern of the POT shows the semi-crystalline nature of the films. FTIR studies show the information of functional groups in POT. The optical transmittance and reflectance of POT film was measured in the 200–2500 nm wavelength range. The absorption coefficient analysis shows that the optical band gaps of POT film are direct allowed transition band gaps with 1.2 and 2.6 eV. Other optical absorption parameters such as extinction molar coefficient, oscillator strength and electric dipole strength were also calculated. The dispersion parameters were determined and discussed based on the single oscillator model. According to the analysis of dispersion curves some important parameters such as dispersion energy (Ed), oscillator energy (Eo), high frequency dielectric constant (ε) and lattice dielectric constant (εL) were also evaluated. Discussion of the obtained results and their comparison with the previous published data were also given. The obtained desirable results of POT thin film can be useful for the optoelectronic applications.  相似文献   

10.
We make an extensive investigation of linear, third-order nonlinear, and total optical absorption coefficients (ACs) of impurity doped quantum dots (QDs) in presence and absence of noise. The noise invoked in the present study is a Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been introduced to the system additively and multiplicatively. A perpendicular magnetic field acts as a source of confinement and a static external electric field has been applied. The AC profiles have been studied as a function of incident photon energy when several important parameters such as optical intensity, electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength take on different values. In addition, the role of mode of application of noise (additive/multiplicative) on the AC profiles has also been analyzed meticulously. The AC profiles often consist of a number of interesting observations such as one photon resonance enhancement, shift of AC peak position, variation of AC peak intensity, and bleaching of AC peak. However, presence of noise alters the features of AC profiles and leads to some interesting manifestations. Multiplicative noise brings about more complexity in the AC profiles than its additive counterpart. The observations indeed illuminate several useful aspects in the study of linear and nonlinear optical properties of doped QD systems, specially in presence of noise. The findings are expected to be quite relevant from a technological perspective.  相似文献   

11.
Wenfang Xie 《Physics letters. A》2008,372(33):5498-5500
A investigation of the nonlinear optical properties of a hydrogenic donor in a disc-like parabolic quantum dot has been performed by using the matrix diagonalization method. The optical absorption coefficient between the ground (L=0) and the first excited state (L=1) have been examined based on the computed energies and wave functions. The results are presented as a function of the incident photon energy for the different values of the incident optical intensity and the confinement strength. We found the total optical absorption coefficient is strongly affected by the incident optical intensity and the confinement strength.  相似文献   

12.
The effect of longitudinal optical phonon field on the ground state and low lying-excited state energies of a hydrogenic impurity in a Zn1−xCdxSe/ZnSe strained quantum dot is investigated for various Cd content using the Aldrich-Bajaj effective potential. We consider the strain effect considering the internal electric field induced by the spontaneous and piezoelectric polarizations. Calculations have been performed using Bessel function as an orthonormal basis for different confinement potentials of barrier height. Polaron induced photoionization cross section of the hydrogenic impurity in the quantum dot is investigated. We study the oscillator strengths, the linear and third-order nonlinear optical absorption coefficients as a function of incident photon energy for 1s-1p and 1p-1d transitions with and without the polaronic effect. It is observed that the potential taking into account the effects of phonon makes the binding energies more than the obtained results using a Coulomb potential screened by a static dielectric constant and the optical properties of hydrogenic impurity in a quantum dot are strongly affected by the confining potential and the radii. It is also observed that the magnitude of the absorption coefficients increases for the transitions between higher levels with the inclusion of phonon effect.  相似文献   

13.
0.91Pb(Zn1/3Nb2/3)O3--0.09PbTiO3 (PZN--9%PT) single crystals with different orientations are investigated by using a spectroscopic ellipsometer, and the refractive indices and the extinction coefficients are obtained. The Sellmeier dispersion equations for the refractive indices are obtained by the least square fitting, which can be used to calculate the refractive indices in a low absorption wavelength range. Average Sellmeier oscillator parameters Eo, $\lambda$o, So, and Ed are calculated by fitting with the single-term oscillator equation, which are related directly to the electronic energy band structure. The optical energy bandgaps are obtained from the absorption coefficient spectra. Our results show that the optical properties of [001] and [111] poled crystals are very similar, but quite different from those of the [011] poled crystal.  相似文献   

14.
Zinc telluride thin films with different thicknesses have been deposited by electron beam gun evaporation system onto glass substrates at room temperature. X-ray and electron diffraction techniques have been employed to determine the crystal structure and the particle size of the deposited films. The stoichiometry of the deposited films was confirmed by means of energy-dispersive X-ray spectrometry. The optical transmission and reflection spectrum of the deposited films have been recorded in the wavelength optical range 450-2500 nm. The variation of the optical parameters, i.e. refractive index, n, extinction coefficient, k, with thickness of the deposited films has been investigated. The refractive index dispersion in the transmission and low absorption region is adequately described by the single-oscillator model, whereby the values of the oscillator strength, oscillator position, dispersion parameter as well as the high-frequency dielectric constant were calculated for different film thickness. Graphical representations of the surface and volume energy loss function were also presented.  相似文献   

15.
Thin films of InSe were prepared by thermal evaporation technique. The as-deposited films have nano-scale crystalline nature and the annealing enhanced the degree of crystallinity. The optical properties of nanocrystalline thin films of InSe were studied using spectrophotometric measurements of transmittance, T, and reflectance, R, at normal incidence of light in the wavelength range 200–2500 nm. The optical constants (refractive index, n, and absorption index, k) were calculated using a computer program based on Murmann's exact equations. The calculated optical constants are independent of the film thickness. The optical dispersion parameters have been analysed by single oscillator model. The type of transition in InSe films is indirect allowed with a value of energy gap equals to 1.10 eV, which increased to 1.23 eV upon annealing.  相似文献   

16.
The electronic structure and optical properties of one-electron Quantum Dot (QD) with and without an on-center impurity were investigated by assuming a spherically symmetric confining potential of finite depth. The energy eigenvalues and the state functions of QD were calculated by using a combination of Quantum Genetic Algorithm (QGA) and Hartree–Fock Roothan (HFR) method. We have calculated the binding energy for the states 1s,1p,1d,1f, oscillator strengths, the linear and third-order nonlinear optical absorption coefficients as a function of the incident photon energy and incident optical intensity for the 1s–1p, 1p–1d and 1d–1f transitions. The existence of the impurity has great influence on the optical absorption spectra and the oscillator strengths. Also we found that the magnitudes of the total absorption coefficients of the spherical QD increase for transitions between higher states.  相似文献   

17.
Optical properties of a nanoring with Winternitz–Smorodinsky confinement potential in the presence of an external magnetic field have been studied theoretically. Our results demonstrate that energy, oscillator strength and the linear, nonlinear and total absorption are strongly affected by size of the nanoring. Also, we found that magnetic field has little influence on energy difference, oscillator strength and optical absorption of the nanoring.  相似文献   

18.
A high-quality ZnNb2O6 single-crystal grown by optical floating zone method has been used as a research prototype to analyze the optoelectronic parameters by measuring the absorption coefficient and transmittance spectra along the b-axis from 200 nm to 1000 nm at room temperature. The optical interband transitions of ZnNb2O6 have been determined as a direct transition with a band gap of 3.84 eV. The refractive index, extinction coefficient, and real and imaginary parts of the complex dielectric constants as functions of the wavelength for ZnNb2O6 crystal are obtained from the measured absorption coefficients and transmittance spectra. In the Urbach tail of 3.16–3.60 eV, the validity of the Cauchy–Sellmeier equation has also been evaluated. Using the single effective oscillator model, the oscillator energy Eo is found to be 4.77 eV. The dispersion energy Ed is 26.88 eV and ZnNb2O6 crystal takes an ionic value.  相似文献   

19.
Using exact diagonalization techniques, the low-lying states of an exciton, and the linear and nonlinear optical absorptions in a disc-like quantum dot are theoretically studied. The numerical results for the typical GaAs material show the so-called quantum size effect. Also, our study is restricted on the transition between the S state (L = 0) and the P state (L = 1). The optical absorption coefficients are greatly enhanced because of the induced size confinement. Meantime, we find that the total optical absorption coefficient is about two times bigger than that obtained by without considering exciton effects. Additionally, the optical absorption saturation intensity can be controlled by the incident optical intensity I.  相似文献   

20.
The drop casting technique has been successfully used to deposit highly uniform and good adhesion rhodamine B (Rh.B) thin films. The structural and morphological properties of Rh.B were studied by X-ray diffraction (XRD), and transmission electron microscopy (TEM), respectively. The molecular structure and electronic transitions of Rh.B were investigated by Fourier-transform infrared (FTIR) and ultraviolet-visible-near infrared (UV-VIS-NIR) spectra, respectively. The calculated Stokes shift between the excitation and emission of Rh.B reflects the displacement in potential surface between the ground and the excited states. The important absorption parameters such as molar extinction coefficient (εmolar), the oscillator strength (f), and the electric dipole strength (q2) were also reported. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals an indirect allowed transition with a band gap of 1.97 eV and associated phonons of 75 meV. The dispersion of the refractive index is discussed in terms of the single oscillator Wemple-Didomenico (WD) model. The single oscillator energy (Eo), the dispersion energy (Ed), the high frequency dielectric constant (ε), the lattice dielectric constant (εL) and the ratio of the free charge carrier concentration to the effective mass (N / m?) were estimated. From the optical constants analysis, the optical conductivity, volume and surface energy loss functions could also be calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号