首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J.C. Qiao 《Journal of Non》2011,357(14):2590-2594
Crystallization transformation kinetics in isothermal and non-isothermal (continuous heating) modes were investigated in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC). In isochronal heating process, activation energy for crystallization at different crystallized volume fraction is analyzed by Kissinger method. Average value for crystallization in Cu46Zr45Al7Y2 bulk metallic glass is 361 kJ/mol in isochronal process. Isothermal transformation kinetics was described by the Johnson-Mehl-Avrami (JMA) model. Avrami exponent n ranges from 2.4 to 2.8. The average value, around 2.5, indicates that crystallization mechanism is mainly three-dimensional diffusion-controlled. Activation energy is 484 kJ/mol in isothermal transformation for Cu46Zr45Al7Y2 bulk metallic glass. These different results were discussed using kinetic models. In addition, average activation energy of Cu46Zr45Al7Y2 bulk metallic glass calculated using Arrhenius equation is larger than the value calculated by the Kissinger method in non-isothermal conditions. The reason lies in the nucleation determinant in the non-isothermal mode, since crystallization begins at low temperature. Moreover, both nucleation and growth are involved with the same significance during isothermal crystallization. Therefore, the energy barrier in isothermal annealing mode is higher than that of isochronal conditions.  相似文献   

2.
The crystallization behavior and microstructure development of the Zr61Al7.5Cu17.5Ni10Si4 alloy during annealing were investigated by isothermal differential scanning calorimetry, X-ray diffractometry and transmission electron microscopy. During isothermal annealing of the Zr61Al7.5Cu17.5Ni10Si4 alloy at 703 K, Zr2Cu crystals with an average size of about 5 nm were first observed during the early stages (30% crystallization) of crystallization by TEM. The Zr2Cu crystal size increased with annealing time and attained an average size of 20 nm corresponding to the stage of 80% crystallization. In addition, the change in particle size with increasing annealing time exhibited a linear relationship between grain growth time and the cube of the particle size for the Zr2Cu type crystalline phase. This indicates that the crystal growth of the Zr61Al7.5Cu17.5Ni10Si4 alloy belongs to a thermal activated process of the Arrhenius type. The activation energy for the grain growth of Zr2Cu is 155 ± 20 kJ/mol in the Zr61Al7.5Cu17.5Ni10Si4 amorphous alloy. The lower activation energy for grain growth in compared to that for crystallization in Zr65Cu35 440 kJ/mol crystal corresponds to the rearrangement of smaller atoms in the metallic glass, Al or Si (compare to Zr).  相似文献   

3.
K.T. Liu 《Journal of Non》2008,354(27):3159-3165
The crystallization kinetics in Ni45.6Ti49.3Al5.1 film were studied by differential scanning calorimetry through isothermal and non-isothermal approaches. The activation energy for crystallization was determined to be 374 and 280 kJ/mol by the Kissinger and the Augis & Bennett method, respectively, in non-isothermal methods. In the isothermal annealing study, the Avrami exponents were in the range of 2.78-3.80 between 793 and 823 K, suggesting that the isothermal annealing was governed by three dimensional diffusion-controlled growth for Ni45.6Ti49.3Al5.1 thin films, in which the activation energy of nucleation is higher than that of growth. In addition, the transformation rate curves of Ni45.6Ti49.3Al5.1 film were also constructed by isothermal methods. The crystallization kinetics of amorphous Ni45.6Ti49.3Al5.1 film can thus be appreciated and the transformation rate also can be employed to control the degree of crystallization.  相似文献   

4.
The formation of the supercooled liquid region and devitrification behavior of Ni-based glassy alloys were studied by using X-ray diffraction, transmission electron microscopy, differential scanning calorimetry and isothermal calorimetry. oC68 Ni10Zr7-type phase is primarily formed in the studied alloys in the initial stage of the devitrification process by nucleation and three-dimensional diffusion controlled growth. The replacement of Cu by Ni in Cu55Zr30Ti10Pd5 glassy alloy induces precipitation of oC68 Ni10Zr7 phase directly from the glassy phase. The reasons for such a behavior are discussed taking into account mixing enthalpy in a liquid state and the interval of the supercooled liquid region.  相似文献   

5.
The glass transition and crystallization kinetics of melt-spun Ni60Nb20Zr20 amorphous alloy ribbons have been studied under non-isothermal and isothermal conditions using differential scanning calorimetry (DSC). The dependence of glass transition and crystallization temperatures on heating rates was analyzed by Lasocka's relationship. The activation energies of crystallization, Ex, were determined to be 499.5 kJ/mol and 488.6 kJ/mol using the Kissinger and Ozawa equations, respectively. The Johnson–Mehl–Avrami equation has also been applied to the isothermal kinetics and the Avrami exponents are in the range of 1.92–2.47 indicating a diffusion-controlled three-dimensional growth mechanism. The activation energy obtained from the Arrhenius equation in the isothermal process was calculated to be Ex = 419.5 kJ/mol. The corresponding three dimensional (3D) time–temperature–transformation (TTT) diagram of crystallization for the alloy has been drawn which provides the information about transformation at a particular temperature. In addition, the intermetallic phases and morphology after thermal treatment have been identified by X-ray diffraction (XRD) and scanning electron microscope (SEM).  相似文献   

6.
Y. Wu  G.M. Song  Y. Umakoshi 《Journal of Non》2011,357(3):1136-1140
The crystallization behavior of Zr65.0Al7.5Ni10.0Cu17.5 metallic glasses by addition of Ni with 753 K annealing treatment and its effect on the oxidation resistance around the supercooled liquid region at 663 K were studied. By annealing at 753 K, the nanocrystalline phase of bct-Zr2Cu precipitates was observed in the Zr65.0Al7.5Cu27.5 specimen, while microstructures consisting of finer nanocrystalline bct-Zr2Cu, fcc-Zr2Ni and Zr6Al2Ni formed in the Zr65.0Al7.5Ni10.0Cu17.5 specimen. The oxidation resistance of the melt-spun Zr65.0Al7.5Ni10.0Cu17.5 specimen was improved by addition of Ni, which is evidenced by less mass gain and thin oxide scale. The microstructural refinement by the formation of numerous nanocrystalline phases of bct-Zr2Cu, fcc-Zr2Ni and Zr6Al2Ni from the matrix resulted in an improvement of the oxidation resistance, whereas a relative coarse nanocrystalline phase consisting of bct-Zr2Cu exhibited fast oxidation along grain boundaries. Although the oxide species for both specimens were composed of a large amount of CuO/Cu2O, some tetragonal and monoclinic-ZrO2 as well as a minor amount of the oxide state of Cu3+, the amount of oxides especially for ZrO2 in the Zr65.0Al7.5Ni10.0Cu17.5 specimen was lower, which was probably due to suppressed oxygen diffusion in ZrO2.  相似文献   

7.
The thermal stability, kinetics of crystallization, and glass forming ability of a Ti48Ni32Cu8Si8Sn4 bulk amorphous alloy have been studied by differential scanning calorimetry using both isothermal and non-isothermal experiments. The activation energy, frequency factor, and reaction rate for the crystallization cascade were determined via the Kissinger method. X-ray diffractometry and transmission electron microscopy studies revealed that crystallization starts with the primary precipitation of Ti(Ni,Cu), followed by the nucleation of Cu3Ti from the amorphous precursor. The kinetics of nucleation of the primary crystalline phase was also investigated using the Johnson–Mehl-Avrami method and the Avrami exponent, n, was determined. This new alloy possesses a significantly larger supercooled liquid region than any other non beryllium- or non rare earth – containing titanium-based bulk metallic glass to date.  相似文献   

8.
H.C. Kou  J. Wang  H. Chang  B. Tang  J.S. Li  R. Hu  L. Zhou 《Journal of Non》2009,355(7):420-2594
The isochronal crystallization kinetics of the Ti40Zr25Ni8Cu9Be18 metallic glass has been investigated by differential scanning calorimetry (DSC). Results indicate that the two crystallization events of this metallic glass cannot be well-described by the classic Johnson-Mehl-Avrami (JMA) kinetic equation. The kinetic equation considering the impingement effect has been found more applicable for describing the isochronal crystallization kinetics of this amorphous alloy. Accurate values of kinetic parameters were determined by fitting the theoretical DSC data to experimental curves. The kinetic parameters change in different crystallization stages and show strong heating rate dependence. Reasons of the deviation from the JMA kinetics for the isochronal crystallization of Ti40Zr25Ni8Cu9Be18 metallic glass were discussed.  相似文献   

9.
D. Roy  H. Raghuvanshi 《Journal of Non》2011,357(7):1701-1704
The crystallization behavior and thermal stability of amorphous phases of Al65Cu20Ti15 alloy obtained by mechanical alloying were investigated by using in-situ X-ray diffraction and differential scanning calorimetry (DSC) under non isothermal and isothermal conditions. The result of a Kissinger analysis shows that the activation energy for crystallization is 1131 kJ/mol. The higher stability against crystallization of Al65Cu20Ti15 amorphous alloy is attributed to the stronger interaction of atoms in the Al-Cu-Ti system and formed of complicated compound like Al5CuTi2 and Al4Cu9 as primary phases. The isothermal crystallization was modeled by using the Johnson-Mehl-Avrami (JMA) equation. The Avarami exponents suggest that the isothermal crystallization is governed by a three-dimensional diffusion-controlled growth.  相似文献   

10.
The transformation behaviour of the bcc Mg11Sm phase prepared by rapid solidification from the melt has been studied by DSC. The Kissinger and Ozawa equations led to the following activation energies of the first and the second phase transition: E ≈ 130 kJ/mol and E ≈ 194 kJ/mol, respectively. Isothermal Avrami kinetics of the first phase transition starts with an Avrami exponent n ≈ 2,5, dropping down at higher degrees of transformation to n ≈ 1.5. The data obtained have been compared with the parameters of the isothermal Avrami kinetics of decomposition of a rapidly quenched supersaturated MgYb4.87 alloy.  相似文献   

11.
Transformation kinetic analytical model plays an important role in the prediction of the microstructural evolution. In this paper, a simple formula has been developed for isothermal mixed nucleation transformation as the kinetic parameters of its JMAK-form formula vary upon time. The explored multi-peak transformation kinetics shows that each peak can be treated as a JMAK case, which is consistent with the classical JMAK model in only one peak case. Thereafter, a method has been developed to deal with the isothermal DSC data of multi-peak overlapping transformation. The isothermal crystallization process of Mg65Cu25Y10 amorphous alloy has been explored and fitted well with the multi-peak kinetics model, which indicates a continuous nucleation, three dimensional interface-controlled growth mechanism with three crystallization peaks overlapping each other.  相似文献   

12.
Amorphous ribbon specimen of (Ni0.75Fe0.25)78Si10B12 has been prepared by a single roller melt-spinning technique in the air atmosphere. The crystallization kinetics of the alloy has been investigated using different thermal analysis by means of continuous heating and isothermal heating. The activation energy of the alloy has been calculated by using Kissinger plot method and Ozawa plot method based on differential thermal analysis data, respectively. The products of crystallization have been analyzed by X-ray diffraction. A single phase of γ-(Fe, Ni) solid solution with grain size of about 10.3 and 18.5 nm precipitates in the amorphous matrix after annealing at temperatures 715 and 745 K, respectively. The crystallized phases are γ-(Fe, Ni) solid solution, Fe2Si, Ni2Si, Fe3B and unidentified phase after annealing at 765 K. The details of nucleation and growth during the isothermal crystallization are expatiated in terms of local Avrami exponent and local activation energy.  相似文献   

13.
The crystallization of amorphous Cu60Zr40 prepared by magnetron sputter deposition was studied by differential scanning calorimetry, X-ray diffraction and transmission electron microscopy. Calorimetric results were similar to those reported in the literature for liquid-quenched Cu60Zr40, including the manifestation of a glass transition. Crystallization above and below the glass transition temperature, Tg, occurred by nucleation and growth of the equilibrium phase, Cu10Zr7. This phase was characterized by convergent beam electron diffraction. With isothermal annealing below Tg, the time scale for crystallization indicated that the vapor-quenched alloy was kinetically more stable than the liquid-quenched alloy. This was interpreted as a difference in the quenched-in structures, produced by the different synthesis methods. During longer anneals, TEM analysis indicated that the structure was being contaminated by oxygen.  相似文献   

14.
The correlation between the quenching temperature and the crystallization of the Zr65Al7.5Ni10Cu17.5 metallic glass was examined. The electrical resistivity and the thermal property were measured to monitor the structural change of the samples quenched at the temperature of 1473 K, 1573 K, 1673 K and 1773 K, respectively. The consistent results of DSC and d(ρ(T)0)/dT‐T curves indicated different crystallization behaviors of the samples. For the samples quenched from 1773 K, the increase in ΔTx, Trg and γ imply higher glass forming ability. Moreover, according to the XRD patterns of samples annealed at different temperatures, the melt temperature influences the formation of crystallized phases of amorphous Zr65Al7.5Ni10Cu17.5 alloy.  相似文献   

15.
Using viscosity measurement method and in-situ heating synchrotron radiation, the viscosity of the (Zr0.55Al0.1Ni0.05Cu0.3)100 ? xYx (x = 0, 0.5, 1, 2) bulk metallic glasses (BMGs) in their supercooled liquid regions (SLRs) and the in-situ heating nucleation were investigated, respectively. In the SLR, the (Zr0.55Al0.1Ni0.05Cu0.3)99Y1 metallic glass which shows distinct plastic strain in compression exhibits higher viscosity than the other three BMGs, however their Poisson's ratios are almost the same. The synchrotron diffraction results show that crystallization happened in the SLR of the (Zr0.55Al0.1Ni0.05Cu0.3)99Y1 glassy alloy, which could be the reason for the higher viscosity and larger plastic strain in compression compared to the other three alloys. The fracture surfaces of the glassy alloys were observed and analyzed.  相似文献   

16.
The glass-forming ability and devitrification behavior of a Zr55Cu35Al10 bulk glass-forming alloy were examined to elucidate the very high nanocrystallization product density (> 1023 m?3). The crystallization kinetics and structural changes in the glassy alloy were studied using X-ray diffraction, transmission electron microscopy, differential scanning and isothermal calorimetry methods. The observed sequential phase formation during isothermal reaction and the high nanocrystal density are consistent with the influence of residual oxygen even at low levels (< 500 ppm) to promote nucleation.  相似文献   

17.
The influence of outphase Cu50Ti50 amorphous alloy addition on microstructural evolution of Zr66.7Ni33.3 amorphous alloy has been investigated using a mechanical alloying method. It has been found that the milling induced microstructural evolution is related to the change of peak positions of the first maximum on X-ray diffraction patterns of the as-obtained amorphous alloys. With increasing milling time, the 3 wt.% Cu50Ti50 addition can give rise to the cyclic amorphization transformation of the as-milled alloy. The mechanical stability of the mixing amorphous phase can be greatly enhanced with increasing Cu50Ti50 addition up to 10 wt.%. Moreover, the addition of outphase Cu50Ti50 amorphous alloy not only increases the onset crystallization temperature of Zr66.7Ni33.3 amorphous alloy but also alters its crystallization mode. The effect of outphase amorphous addition on the mechanical stability of the Zr66.7Ni33.3 amorphous phase has been discussed based upon the bond order theory.  相似文献   

18.
《Journal of Non》2005,351(49-51):3760-3771
The primary nano-crystallization of fcc Al in initially amorphous Al85Ni8Y5Co2 has been studied by differential scanning calorimetry (DSC), transmission electron microscopy (TEM) in combination with energy electron loss spectroscopy (EELS), high-resolution transmission electron microscopy (HRTEM) and X-ray diffractometry (XRD). TEM in combination with EELS after both isochronal and isothermal annealing allowed the determination of the change of the crystalline particle density and particle density/size distribution. The crystallization in Al85Ni8Y5Co2 was found to take place in three sequences. In the first step of the first sequence spherical fcc Al nano-particles develop with a very high particle density. In the second step of the first sequence the more or less spherical Al particles develop protrusions without significant further nucleation of fcc Al particles. In the second sequence nucleation of new fcc Al particles takes place. Comparing the crystallization behavior of Al85Ni8Y5Co2 with that of Al85Ni5Y8Co2 it follows that the yttrium solute level has a strong influence on the nucleation and growth behavior during the fcc Al primary nano-crystallization.  相似文献   

19.
《Journal of Non》2007,353(24-25):2452-2458
The bulk amorphous Zr55Cu30Al10Ni5 alloy is one of the widely studied Zr-based alloys due to very attractive thermal and mechanical properties. Alloy ribbons and bulk samples were synthesized by Cu mould casting and characterized by SEM/EDS, DSC and XRD. Mechanical properties like Vicker’s hardness, nanohardness and elastic modulus etc. were measured. Ion irradiation of the samples was carried out to enhance the surface properties without altering the amorphous nature of the bulk material. Ion irradiation by singly charged Ar+ enhanced the hardness as well as elastic modulus considerably.  相似文献   

20.
Metallic glass microstructures with high aspect ratios for micro-electro-mechanical system applications have been fabricated by micro-electro-discharge machining and selective electrochemical dissolution methods. Micro-holes and three-dimensional microstructures machined on the La62Al14Ni12Cu12, Zr55Al10Ni5Cu30 and Cu46Zr44Al7Y3 bulk metallic glasses by micro-electro-discharge machining are evaluated by using X-ray diffraction, scanning electron microscopy, and nanoindentation. The experimental results demonstrate that the machined samples kept their amorphous structure without devitrification, and their machining characteristics are related to the thermo-physical properties of the alloys and the electrode diameters. Porous, single-pore and thin-walled Zr-based metallic glass tubes with micro-pore structures can be prepared by selective electrochemical dissolution method. The high aspect ratio microstructures fabricated by the two methods have the potential applications as micro-nozzles, polymer micro-injection molding tools, micro-channels or micro-flow meters in micro-electro-mechanical system devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号