首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structure and optical properties of MoO3-doped lead borate glasses which contain high PbO content (60, 70 and 80%) have been studied using Fourier transform infrared (FTIR) and ultraviolet–visible (UV–VIS) spectroscopic tools. FTIR spectra reveal absorption bands which are characteristic for various structural units of borate network, mainly BO3 triangles and BO4 tetrahedra, in addition to the PbOn (where n = 3 and/or 4) structural units. UV–VIS optical absorption spectra reveal broad intense charge transfer UV bands due to Pb2 + ions in the range 320–385 nm. Within this range, molybdenum ions, preferably Mo3 + and Mo5 +, can interfere at about 360–385 nm. Additionally, molybdenum ions give a weak visible band at about 850–860 nm. The optical absorption spectra of the studied glasses show marked resistance to successive gamma irradiation up to 5 Mrad. This shielding behavior can be related to the present high content of the high atomic mass Pb2 + ions. Changes in the atomic structure before and after gamma irradiation are described and explained.  相似文献   

2.
3.
To better understand non-framework cation mixing in Ca–Mg aluminosilicate glasses, 17O MAS and 3QMAS NMR studies were done on glasses on the Mg3Al2Si3O12–Ca3Al2Si3O12 join as well as several compositions with lower Al/Si ratios. While not all of the oxygen sites are fully resolved, the non-bridging oxygen associated with two Ca and one Mg cations is under-represented relative to that predicted by a model assuming random Ca/Mg mixing. Therefore, local non-bridging oxygen environments are rich in Mg, and extra Ca must be associated with charged bridging oxygens such as Al–O–Si. The deviation from random mixing increases as the Al/Si ratio decreases and as XMg approaches 0.50, suggesting a reduction in configurational entropy that may be compensated for by other sources, including mixing of network forming cations. Al–O–Al is detected, and appears to increase with increasing XMg and increasing Al/Si. High field 27Al MAS NMR also shows that these glasses all have substantial concentrations of [5]Al, but no detectable [6]Al (0.5% detection limit). The amount of [5]Al increases non-linearly as XMg increases and very slightly as Al/Si increases.  相似文献   

4.
Gao Tang  Cunming Liu  Zhiyong Yang  Lan Luo  Wei Chen 《Journal of Non》2009,355(31-33):1585-1589
Microstructure of the chalcohalide glasses: GeSe2–Ga2Se3–CsI and GeSe2–Ga2Se3–PbI2 ternary system were investigated by Raman spectra, lifetime of Dy3+ infrared emission and glass transition temperature (Tg). The evolution of the Raman spectra shows that the fundamental structural groups of these studied glasses consist of [Ge(Ga)Se4] tetrahedral and some complex structure units [Ge(Ga)IxSe4?x](x = 1–4). The x value varied when the different iodide was added in Ge–Ga–Se matrix. For GeSe2–Ga2Se3–CsI glasses, the [Ge(Ga)IxSe4?x](x = 1–4) mixed-anion tetrahedral and [Ga2I7]? units occurred. For GeSe2–Ga2Se3–PbI2 glasses, the [Ge(Ga)I2Se2], [Ge(Ga)I3Se] units can be formed. The changes of Dy3+ infrared emission lifetime and Tg support the results. Additionally, [PbIn] structural units will be formed in GeSe2–Ga2Se3–PbI2 glasses due to high form-ability of these units when the PbI2 content is high.  相似文献   

5.
6.
7.
The structural role, coordination geometry and valence of Fe in a series of Fe2O3–PbO–SiO2–Na2O glasses are studied by means of Fe-K-NEXAFS and EXAFS spectroscopies. Parameters for the study are the concentration of the Fe and Pb-oxides, the SiO2/Na2O ratio and the cast temperature. The EXAFS and NEXAFS results reveal that the role of Fe3+ depends on the concentration of Fe2O3. More specifically, in most of the studied quaternary systems, the Fe3+ ion is a glass former, i.e. the Fe atoms belong to FeO4 tetrahedra that participate in the formation of the glassy network. The role of Fe as an intermediate oxide is identified only in one sample with 20 wt% Fe2O3, where ~80 at.% of the Fe atoms are tetrahedrally coordinated with O atoms, while the remaining ~20 at.% of the Fe atoms occupy octahedral sites. It is also revealed that the tetrahedral coordination of Fe in the vitreous matrix is destroyed when a number of parameters is altered, such as the Tcast, the (Fe + Si)/O and the SiO2/Na2O ratio.  相似文献   

8.
Ultrafast third-order optical nonlinearity of Ge–Ga–Ag–S chalcogenide glasses at the wavelength of 820 nm has been measured using femtosecond time-resolved optical Kerr (OKE) technique. The results show that Ge–Ga–Ag–S glasses have large third-order optical nonlinear susceptibility, χ(3) and the response time is also subpicosecond, which are predominantly due to the ultrafast distortion of electron cloud surrounding the balanced positions of Ge, Ga, Ag and S atoms. What’s more, a strong dependence of χ(3) on the composition and microstructure of these glasses was found which shows that [GeS4] and [GaS4] tetrahedra play an important role on the third-order optical nonlinearity. These Ge–Ga–Ag–S chalcogenide glasses would be expected as promising materials applied on all-optical switching devices.  相似文献   

9.
Direct electrical conductivity and dependencies of complex electrical modulus vs. temperature and frequency have been measured on glasses from the MnF2–ZnF2–NaPO3 system. These glasses are sensitive to atmospheric humidity and as a consequence, the electrical conductivity increases up to temperature of 50 °C. A hydrated layer is created by the effect of water and leads to the significant increase of the electrical conductivity in the case of 0MnF2–20ZnF2–80NaPO3 glass. This behavior is governed by Arrhenius relation where the values of activation energy are increasing and values of the electrical conductivity are decreasing with the amount of MnF2. Dielectric measurements show that a heterogeneous phase is formed in the bulk of glasses. This may be seen when plotting complex electrical modulus in the complex plane. The records made by the light microscope confirmed the occurrence of the other phase in the bulk of glasses.  相似文献   

10.
Thermal properties, water durability and structure of Nb2O5–SrO–P2O5 glasses containing 0–25 mol% Nb2O5 and 35–60 mol% SrO were explored aiming to develop high refractive index optical glasses. Structure studied using Raman and NMR spectra reveals that by increasing Nb2O5 content, niobium plays the role as intermediate. Nb5+ tends to break P–O–P and O–P–O bonds forming [NbO6] structure. Thus fractions of Q3 and Q2 decrease, while Q1 fraction increases. Furthermore the Q0 fraction replaces the lessened Q3 fraction. As P2O5 content is reduced to 30 mol%, partial [NbO6]octa turns into [NbO4]tetra and partial (Nb–O)short-octa becomes (Nb–O)short-tetra bond to stabilize the glass structure. Glass-transition and softening-temperatures of the glasses increase by increasing SrO and Nb2O5 contents. Thermal expansion coefficient increases by increasing SrO while decreases with Nb2O5 content. Water durability is enhanced as increasing Nb2O5 and SrO contents. Properties of the glasses correlate well with the worked out structure.  相似文献   

11.
40PbO–(10 ? x)PbF2–50 SiO2:xWO3 (where x = 1 to 7 mol%) glasses are prepared in the glass forming region. Spectroscopic studies (UV–Vis absorption, ESR, IR) are carried out for these glasses. Interesting changes are observed in the spectroscopic parameters of these glasses when the concentration of WO3 is changing in the glass matrix. Two absorption bands are observed around at 830 and 620 nm. ESR signal are measured at room temperature for these glasses, the strength of the signal is increased and hyperfine splitting is resolved with increasing the concentration of WO3 in the glass matrix. IR transmission gives valuable information about the nature of bonds in the glass matrix. The physical parameters along with spectroscopic parameters are measured.  相似文献   

12.
The results of a structural study combining NMR and Raman spectroscopy of several melt-derived glasses in the system Na2O–MgO–CaO–P2O5–SiO2 are presented. The Raman spectra show clear changes in the Si–O–Si vibrational modes (related to the bridging oxygen atoms, BO) and also verify the presence of non-bridging oxygen atoms (NBO), also named terminal oxygens. The intensity of the Si–O–NBO stretching mode depends on the cation concentration. It can be concluded from the NMR studies that the MgO-containing samples have orthophosphate units charge-compensated by Ca2+ and Mg2+. The silicate matrix also contains both types of two-valent cations and consists of Q2 and Q1 units. Similarly, the Na2O-containing samples contain isolated orthophosphate units in a silicate matrix (Q2 and Q3 units), both charge-compensated by mixed cations Ca2+ and Na+. These experimental data were compared with theoretical parameters given by the Stevels model, which is a suitable tool for understanding bioactive behavior of these glasses. Furthermore, results of the in vitro tests carried out in simulated body fluids are presented and compared with both Raman and NMR structural data.  相似文献   

13.
In an effort to design low-melting, durable, transparent glasses, two series of glasses have been prepared in the NaPO3–ZnO–Nb2O5–Al2O3 system with ZnO/Nb2O5 ratio of 2 and 1. The addition of ZnO and Nb2O5 to the sodium aluminophosphate matrix yields a linear increase of properties such as glass transition temperature, density, refractive index and elastic moduli. The chemical durability is also significantly, but nonlinearly, improved. The glass with the highest niobium concentration, 55NaPO3–20ZnO–20Nb2O5–5Al2O3 was found to have a dissolution rate of 4.5 × 10? 8 g cm? 2 min? 1, comparable to window glass. Structural models of the glasses were developed using Raman spectroscopy and nuclear magnetic resonance spectroscopy, and the models were correlated with the compositional dependence of the properties.  相似文献   

14.
(As0.33S0.67)100-xAgx (0  x  28) bulk glasses showing micro-phase separation in a wide concentration range have been studied by X-ray diffraction, neutron diffraction and extended X-ray absorption fine structure measurements. The AsAgS2 composition, which forms a homogeneous glass, is modeled with the reverse Monte-Carlo simulation technique. It is established that Ag prefers the environment of S; Ag―As bonding cannot be observed. Similarly to the AsAgS2 crystalline modifications smithite and trechmannite, the main structural units of the glass are AsS3 pyramids. The covalent network of As and S atoms becomes fragmented in the glassy AsAgS2 unlike in the glassy AsS2. The environment of Ag atoms in the AsAgS2 glass differs from that in the crystalline state. In average, each Ag atom has four nearest neighbors, three of them being S and one being Ag.  相似文献   

15.
FTIR spectra of three MgO–PbO–B2O3 glass series have been analyzed. There is a decrease in the fraction N4 of four coordinated boron with increasing the MgO content, at the expense of PbO. A new technique has been presented to make use of the N4 data and follow the change in the modifier and former fractions of PbO and MgO. These fractions change markedly, at different rates, with the glass composition. The fraction of modifier MgO is always less than the MgO content, which suggests a former role of this oxide in the studied glasses. The ability of the glass to include MgO increases with increasing PbO content.  相似文献   

16.
xCuO(1-x)[P2O5·PbO] glass system with 0  x  50 mol% was prepared and investigated by means of EPR and IR spectroscopy in order to evidence the structural changes induced by different amounts of copper ions. EPR spectra analysis together with EPR parameters has indicated a distorted tetragonal symmetry – named tetrahedral local symmetry – for Cu2 + ions in the studied glasses. A change in the shape of EPR spectra was also observed as for small CuO concentration (x < 20 mol%) these glasses present an asymmetrical line typical for isolated ions and for high CuO content this line is replaced by a symmetrical one characteristic of clustered ions through dipole–dipole interactions. IR spectra of the studied glasses put in evidence a strong depolymerization effect with a gradual increase of CuO. The shift of PO asymmetric stretching vibration band to lower wave number can be explained by the increase of PO4 tetrahedra charge density leading a more ionic and less covalent bonding.  相似文献   

17.
Photochromic behavior of Li-doped MoO3 sol–gels prepared by the peroxo sol–gel method was studied in details using various experimental techniques, including UV–vis, XRD, Raman, EPR, and XPS. The lithium doping has drastically enhanced the stability of the MoO3 sol–gels. Upon UV-light irradiation from a high-pressure mercury lamp, the Li-doped MoO3 sol turned from yellowish into deep blue, and the sol in ethanol exhibited much more intense color change than the sol in water. The UV-light exposure has the effect of re-arranging the structural units of MoO3 and building up short-range order inside the solid. The formation of a blue colored bronze in the photo-irradiated sols because of the reduction of Mo6+ to Mo5+ is also evidenced by the experimental data. Based on these data, a mechanism for the photochromic behavior is proposed.  相似文献   

18.
Vickers hardness and refractive index was determined for Ca–Si–O–N glasses with 14.6–58 e/o N and 19–42 e/o Ca. By applying slow cooling rates, transparent glasses were obtained for compositions near Ca9.94Si10O17.73N8.14, while the majority of the glasses were opaque due to small inclusions of elemental Si and/or Ca-silicide. Determined glass densities varied between 2.80 and 3.25 g/cm3. Hardness was found to vary from 7.3 to 10.1 GPa at a load of 500 g and, respectively increase and decrease linearly with N and Ca content. The refractive index was found to increase linearly with N content from 1.62 to 1.95 and showed no significant dependence on Ca content.  相似文献   

19.
We report the results of a systematic study of the thermal and optical properties of a new family of tellurite glasses, TeO2–ZnO–BaO (TZBa), as a function of the barium oxide mole fraction and compare them with those of TeO2–ZnO–Na2O (TZN). The characteristic temperatures of this new glass family (glass transition, Tg, crystallization, Tx, and melting, Tm) increase significantly with BaO content and the glasses are more thermally stable (greater ΔT = Tx ? Tg) than TZN glasses. Relative to these, Raman gain coefficient of the TZBa glasses also increases by approximately 40% as well as the Raman shift from ~ 680 cm? 1 to ~ 770 cm? 1. The latter shift is due to the modification of the glass with the creation of non-bridging oxygen ions in the glass network. Raman spectroscopy allows us to monitor the changes in the glass network resulting from the introduction of BaO.  相似文献   

20.
In searching for new kind of photoelectric material, chalcogenide glasses in the GeS2–Sb2S3–CdS system have been studied and their glass-forming region was determined. The system has a relatively large glass-forming region that is mainly situated along the GeS2–Sb2S3 binary side. Thermal, optical and mechanical properties of the glasses were reported and the effects of compositional change on their properties are discussed. These novel chalcogenide glasses have relatively high glass transition temperatures (Tg ranges from 566 to 583 K), good thermal stabilities (the maximum of deference between the onset crystallization temperature, Tc, and Tg is 105 K), broad transmission region (0.57–12 μm) and large densities (d ranges from 2.99 to 3.34 g cm?3). These glasses would be expected to be used in the field of rare earth doped fiber amplifiers and nonlinear optical devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号