首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work deals with temporal stability properties of a falling liquid film down an inclined plane in the presence of constant electromagnetic field. Using the Kármán approximation, the problem is reduced to the study of the evolution equation for the free surface of the liquid film derived through a long-wave approximation. A linear stability analysis of the base flow is performed. Also, the solutions of stationary waves and Shkadov waves are introduced and discussed analytically by analyzing the linearized instability of the fixed points and Hopf bifurcation.  相似文献   

2.
The present work deals with temporal stability properties of a falling liquid film down an inclined plane in the presence of a parallel subsonic gas flow. The waves are described by evolution equation previously derived as a generalization of the model for the Newtonian liquid. We confirm linear stability results of the basic flow using the Orr–Sommerfeld analysis to that obtained by long wave approximation analysis. The non-linear stability criteria of the model are discussed analytically and stability branches are obtained. Finally, the solitary wave solutions at the liquid–gas interface are discussed, using specially envelope transform and direct ansatz approach to Ginzburg–Landau equation. The influence of different parameters governing the flow on the stability behavior of the system is discussed in detail.  相似文献   

3.
The finite-amplitude evolution of electroconvective structures in a weakly conducting liquid with an electroconductive charge formation mechanism is examined. The liquid is in the electrostatic field of a horizontally placed capacitor and is heated from below, and the electric charge time constant is much shorter than the characteristic hydrodynamic time. The interaction between the electroconductive convection and thermogravitational convection is considered. The evolution of the supercritical structures is investigated by direct numerical simulation using the finite-difference method. The bifurcations leading to the formation of stationary and wave liquid flows are analyzed. Nonlinear modes of stationary convection and traveling waves with different space-time patterns are identified and investigated. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 3, pp. 20–27, May–June, 2008.  相似文献   

4.
5.
The propagation of one-dimensional perturbations in a viscoelastic relaxing liquid containing gas bubbles is investigated within the framework of the homogeneous model of the medium when the wavelength of the perturbation is much larger than the distance between the bubbles and the bubble radius. The evolution of stationary and nonstationary waves is investigated analytically and with the use of numerical integration; shock waves are also investigated. The results are compared with the behavior of perturbation waves in a Newtonian liquid with gaseous inclusions. The models of the gas-liquid medium [1, 2] are generalized to the case when the liquid phase is a viscoelastic liquid, for example, a weak aqueous solution of polymers. The propagation of longwave perturbations of finite amplitude in such a mixture is investigated using the technique developed in [3].  相似文献   

6.
In the long-wavelength approximation and on the basis of a simplified system of equations analogous to the one considered by Shkadov and Nabil' [1, 2], an investigation is made into waves of finite amplitude in thin films of a viscous liquid on the walls of a channel in the presence of a turbulent gas stream. A bibliography on the linear stability of such plane-parallel flows can be found in [3–5]. The nonlinear stability is considered in [6]. A stationary periodic solution is sought in the form of a Fourier expansion whose coefficients are found near the upper curve of neutral stability by Newton's method and near the lower branch of the stability curve by the method of Petviashvili and Tsvelodub [7, 8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No, 2, pp. 37–42, March–April, 1981.I thank V. Ya. Shkadov for supervising the work and all the participants of G. I. Petrov's seminar for a helpful discussion.  相似文献   

7.
Equations of stationary long waves on the interface between a homogeneous fluid and an exponentially stratified fluid are considered. An equation of the second-order approximation of the shallow water theory inheriting the dispersion properties of the full Euler equations is used as the basic model. A family of asymptotic submodels is constructed, which describe three different types of bifurcation of solitary waves at the boundary points of the continuous spectrum of the linearized problem. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 4, pp. 151–161, July–August, 2008.  相似文献   

8.
The axisymmetric spreading of a thin liquid drop under the influence of gravity and rotation is investigated. The effects of the Coriolis force and surface tension are ignored. The Lie group method is used to analyse the non-linear diffusion-convection equation modelling the spreading of the liquid drop under gravity and rotation. A stationary group invariant solution is obtained. The case when rotation is small is considered next. A straightforward perturbation approach is used to determine the effects of the small rotation on the solution given for spreading under gravity only. Over a short period of time no real difference is observed between the approximate solution and the solution for spreading under gravity only. After a long period of time, the approximate solution tends toward a dewetting solution. We find that the approximate solution is valid only in the interval t∈[0,t∗), where t∗ is the time when dewetting takes place. An approximation to t∗ is obtained.  相似文献   

9.
基底弹性对蒸发超薄液膜去润湿过程的影响   总被引:1,自引:0,他引:1  
研究了基底的弹性变形对蒸发超薄膜的稳定性和去润湿动力学过程的影响. 基于长波近似, 得到了关于液体薄膜厚度的演化方程. 运用线性稳定性理论和数值模拟两种方法, 研究了基底弹性、范德华力以及液体蒸发等因素对液体薄膜的稳定性和去润湿过程的影响. 研究结果表明增大基底的弹性系数或者减小液体的表面张力, 都能加速液膜的破碎, 并且能够影响气液界面波的波长; 液体蒸发能促进气液界面扰动的增长, 有助于液膜的破裂.   相似文献   

10.
This paper deals with the linear stability of a liquid film flowing down an inclined plane. The Navier-Stokes equations were reduced into four evolution equations that describe the development of the film depth, the flow rate, the free surface velocity, and the wall shear stress, using the Karman-Polhausen boundary layer integral method. Thus, we were able to determine the stability threshold and approach well the critical wave number for long waves. The obtained results were found to be in good agreement with the experiments of Liu et al.  相似文献   

11.
Waves that occur at the surface of a falling film of thin power-law fluid on a vertical plane are investigated. Using the method of integral relations an evolution equation is derived for two types of waves equation which are possible under long wave approximation. This equation reveals the presence of both kinematic and dynamic wave processes which may either act together or singularly dominate the wave field depending on the order of different parameters. It is shown that, at a small flow rate, kinematic waves dominate the flow field and the energy is acquired from the mean flow during the interaction of the waves, while, for high flow rate, inertial waves dominate and the energy comes from the kinematic waves. It is also found that this exchange of energy between kinematic and inertial waves strongly depends on the power-law index n. Linear stability analysis predicts the contribution of different terms in the wave mechanism. Further, it is found that the surface tension plays a double role: for a kinematic wave process, it exerts dissipative effects so that a finite amplitude case may be established, but for a dynamic wave process it yields dispersion. Further, it is shown that the non-Newtonian character n plays a vital role in controlling the role of the term that contains surface tension in the above processes.  相似文献   

12.
The process of propagation of shock waves in two-component mixtures is considered. The studies were performed within the framework of the two-velocity approximation of mechanics of heterogeneous media with account of different pressures of the components. The stability of propagation of all types of stationary shock waves (fully dispersed, frozen-dispersed, dispersed-frozen, and frozen shock waves of two-front configuration) to infinitesimal and finite perturbations is shown numerically, using the method of coarse particles. The problem of initiation of shock waves (the formation of different types of shock waves from stepwise initial data) is solved. Flows in the transonic range relative to the speed of sound in the first component are obtained. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 1, pp. 55–63, January–February 1999.  相似文献   

13.
This paper examines the effects of small upward inclinations on the formation of roll waves and the properties of fully developed roll waves at high pressure conditions. A total of 984 experiments were conducted at six positive pipe inclinations θ = 0.00°, 0.10°, 0.25°, 1.00°, 2.50° and 5.00° using a 25 m long 10 cm i.d. pipe. Sulfur hexafluoride (SF6) was used at 8 bara giving a gas density of 50 kg/m3. Two independent mechanisms for the formation of roll waves were identified; (1) interaction between 2D shallow water waves and (2) a visible long wavelength instability of the stratified layer. Viscous long wavelength linear stability analysis predicted the critical liquid flow rate and liquid height for the initiation of roll waves when roll waves were formed due to the second mechanism. A simple equation from shallow water wave theory agreed with measurements for critical liquid flow rate when roll waves were formed due to the first mechanism. Shallow water wave speed agreed with critical wave speeds at transition and nonlinear wave speeds for fully developed roll waves in certain cases. The increase in interfacial friction due to the presence of large waves was compared with models from the literature.  相似文献   

14.
In this paper waves on the surface of a viscous incompressible liquid are investigated in a linear approximation. It is shown that the linear theory gives the principal term of the solution of the problem of steady-state two-dimensional waves of small amplitude in an exact formulation. Subsequently a three-dimensional steady-state motion of a viscous liquid with high surface tension in a vessel is considered. In the first approximation the free boundary is determined as a minimum surface in a field of gravity. The velocity field is found from the solution of the Navier-Stokes equations.  相似文献   

15.
A rapid increase of energy of fluctuation motion is observed after a severe loss of stability of laminar regimes. This phenomenon does not find explanation in the scope of the linear theory of stability, which, though it predicts an exponential increase of disturbances in the supercritical region, gives quite small values of the increments. The explosionlike turbulence is due to a nonlinear mechanism. The simplest collective interaction of disturbances is illustrated by a set of three harmonic oscillations whose parameters are associated by resonance relations. Such triplets, being an elementary but sufficiently meaningful model of the nonlinear theory of hydrodynamic stability, have become in recent years the object of interesting investigations [1–4]. In [5–7] branching of stationary triplets of small amplitude from laminar regimes was investigated and it was shown that, beginning with certain Reynolds numbers, the triplet can be composed of neutral waves and Tolman-Schlichting waves increasing according to the linear theory. It is shown in the article that a quite rich example in this case is Hartmann flow, where the existence of triplets of disturbances having a different symmetry relative to the axis of the channel is admitted. The evolution of triplets is studied for near-critical values of the parameters in the framework of amplitude equations obtained on the basis of the Galerkin method with the use of eigenfunctions of the linear theory of stability as the basis [8]. Regimes stationary in the mean are calculated in the supercritical region: limiting cycles and strange attractors; in the latter case a spectral analysis is carried out.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 33–39, September–October, 1978.The authors thank M. A. Gol'dshtik and M. I. Rabinovich for discussing the work.  相似文献   

16.
Equations are obtained which describe the propagation of long waves of small, but finite amplitude in an ideal weakly conducting liquid and on the basis of these equations the influence of MHD interaction effects on the characteristics of the solitary waves is investigated. The wave equations are derived under less rigorous constraints on the external magnetic field and the MHD interaction parameter than in [1–3]. It is shown that the evolution of the free surface is described by the KdV-Burgers or KdV equations with a dissipative perturbation, and that the propagation velocity of the solitary waves depends on the strength of the external magnetic field.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 177–180, November–December, 1989.  相似文献   

17.
The linear stability of finite-amplitude interfacial gravity solitary waves propagating in a two-layer fluid is investigated analytically focusing on the occurrence of an exchange of stability. We make an asymptotic analysis for small growth rates of infinitesimal disturbances, and explicitly obtain their growth rates near an exchange of stability. The result indicates that an exchange of stability occurs at every stationary value of the total energy of the solitary waves. It also gives us information whether the number of growing modes increases or decreases after experiencing the exchange of stability. We apply these analytical results to specific interfacial solitary waves, and find various features on their stability that are not seen in the case of surface solitary waves.  相似文献   

18.
In this paper, we apply two purely irrotational theories of the motion of a viscous fluid, namely, viscous potential flow (VPF) and the dissipation method to the problem of the decay of waves on the surface of a sphere. We treat the problem of the decay of small disturbances on a viscous drop surrounded by gas of negligible density and viscosity and a bubble immersed in a viscous liquid. The instantaneous velocity field in the viscous liquid is assumed to be irrotational. In VPF, viscosity enters the problem through the viscous normal stress at the free surface. In the dissipation method, viscosity appears in the dissipation integral included in the mechanical energy equation. Comparisons of the eigenvalues from VPF and the dissipation approximation with those from the exact solution of the linearized governing equations are presented. The results show that the viscous irrotational theories exhibit most of the features of the wave dynamics described by the exact solution. In particular, VPF and DM give rise to a viscous correction for the frequency that determines the crossover from oscillatory to monotonically decaying waves. Good to reasonable quantitative agreement with the exact solution is also shown for certain ranges of modes and dimensionless viscosity: For large viscosity and short waves, VPF is a very good approximation to the exact solution. For ‘small’ viscosity and long waves, the dissipation method furnishes the best approximation.  相似文献   

19.
The linear stability of a viscoelastic liquid saturated horizontal anisotropic porous layer heated from below and cooled from above is investigated by considering the Oldroyd type liquid. A generalized Darcy model, which takes into account the viscoelastic properties, the mechanical and thermal anisotropy is employed as momentum equation. The critical Rayleigh number, wavenumber, for stationary and oscillatory states and frequency of oscillation are determined analytically. It is shown that oscillatory instabilities can set in before stationary modes are exhibited. The effect of the viscoelastic parameter, the mechanical and thermal anisotropy parameters and specific heat ratio on the linear stability of the system is analyzed and presented graphically.  相似文献   

20.
The effect of radial pulsations on the stability of a compressible cylindrical gas column surrounded by an ambient liquid is discussed. In the absence of pulsations, the stationary interface is susceptible to the Rayleigh capillary instability, which promotes the growth of longitudinal waves whose wave length is larger than 2 times the column radius, irrespective of the Reynolds number. A Floquet stability analysis for potential flow shows that the pulsations further destabilize the interface by extending the range of unstable wave numbers to a sequence of islands. A similar stability analysis for Stokes flow shows that the pulsations also have a destabilizing influence, though the presence of an insoluble surfactant has a competing stabilizing influence that may cause an overall reduction in the range of unstable wave numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号