首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
刚体元方法是研究块体系的变形和运动的一种数值方法,可以用它来研究弹塑性物体的极限平衡问题,文中用通用的二维刚体元程序计算了正方形柱体顶面中心区域作用方形基础载荷情况的上限解,结果表明,这种方法较好的精度和广泛的适用性。  相似文献   

2.
The multigrid method is one of the most efficient techniques for convergence acceleration of iterative methods. In this method, a grid coarsening algorithm is required. Here, an agglomeration scheme is introduced, which is applicable in both cell‐center and cell‐vertex 2 and 3D discretizations. A new implicit formulation is presented, which results in better computation efficiency, when added to the multigrid scheme. A few simple procedures are also proposed and applied to provide even higher convergence acceleration. The Euler equations are solved on an unstructured grid around standard transonic configurations to validate the algorithm and to assess its superiority to conventional explicit agglomeration schemes. The scheme is applied to 2 and 3D test cases using both cell‐center and cell‐vertex discretizations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Accurate knowledge of the rigid body properties of a structure including the mass, the location of mass center and the moments of inertia is important in machine design, vibration analysis, optimization and modeling of mechanical systems. However, estimation of these properties through theoretical methods is difficult when the structure has a complicated shape. In practice, the inertia properties can be estimated using the conventional modal testing methods by extracting the rigid body modes when the structure is tested in free-free boundary condition. However, all the rigid body modes are not always detectable, due to this fact that the structure is not excited at all degrees of freedom. In order to obtain all of the rigid body modes, many activities have been conducted for selecting the type and location of excitation without much success. In operational modal analysis (OMA), the structure can be excited at any arbitrary point and in different directions. In this paper, a new approach is introduced for estimation of the inertia properties from OMA. The data from OMA are adequate to extract all the rigid body modes of structure. A modal method is used for estimating the inertia properties from the rigid body modes extracted from OMA. The suggested approach is applied to a numerical model of a two-dimensional steel beam as well as a numerical model of a 3D frame and the accuracy of results is evaluated. It is shown that OMA can provide enough data to extract the inertia properties. A real beam is also tested in order to evaluate the performance of the method in practice, needless of a complicated procedure as for conventional methods.  相似文献   

4.
The present paper is focused on the experimental and theoretical analysis of circular cylindrical shells under base excitation. The shell axis is vertical, it is clamped at the base and connected to a rigid body on the top; the base provides a vertical seismic-like excitation. The goal is to investigate the shell response when a resonant harmonic forcing is applied: the first axisymmetric mode is excited around the resonance at relatively low frequency and low amplitude of excitation. A violent resonant phenomenon is experimentally observed as well as an interesting saturation phenomenon close to the previously mentioned resonance. A theoretical model is developed to reproduce the experimental evidence and provide an explanation of the complex dynamics observed experimentally; the model takes into account geometric shell nonlinearities, electrodynamic shaker equations and the shell shaker interaction.  相似文献   

5.
An asymptotic solution of the contact problem of an elastic body indented (without friction) by a circular punch with a flat base is obtained under the assumption of a small relative size of the contact zone. The resulting formulas involve integral characteristics of the elastic body, which depend on its shape, dimensions, fixing conditions, Poisson's ratio, and location of the punch center. These quantities have the mechanical meaning of the coefficients of local compliance of the elastic body. Relations that, generally, reduce the number of independent coefficients in the asymptotic expansion are obtained on the basis of the reciprocal theorem. Some coefficients of local compliance at the center of an elastic hemisphere are calculated numerically. The asymptotic model of an elastic body loaded by a point force is discussed.  相似文献   

6.
The response of a rigid rectangular block resting on a rigid foundation and acted upon simultaneously by a horizontal and a vertical random white-noise excitation is considered. In the equation of motion, the energy dissipation is modeled through a viscous damping term. Under the assumption that the body does not topple, the steady-state joint probability density function of the rotation and the rotational velocity is obtained using the Fokker-Planck equation approach. Closed form solution is obtained for a specific combination of system parameters. A more general but approximate solution to the joint probability density function based on the method of equivalent non-linearization is also presented. Further, the problem of overturning of the block is approached in the framework of the diffusion methods for first passage failure studies. The overturning of the block is deemed incipient when the response trajectories in the phase plane cross the separatrix of the conservative unforced system. Expressions for the moments of first passage time are obtained via a series solution to the governing generalized Pontriagin-Vitt equations. Numerical results illustra- tive of the theoretical solutions are presented and their validity is examined through limited amount of digital simulations.  相似文献   

7.
In this paper experimental study and mathematical modelling of newly designed vibro-impact moling rig are presented. The design is based on electro-mechanical interactions of a conductor with an oscillating magnetic field. The rig consists of a metal bar placed within a solenoid which is connected to an RLC circuit, and an obstacle block positioned nearby. Both the solenoid and the block are attached to a base board. Externally supplied alternating voltage causes the bar to oscillate and hit the block resulting in the forward motion of the base board mimicking a mole penetration through the soil. By varying the excitation voltage and the capacitance in the circuit, a variety of system responses can be obtained.In the paper the rig design and experimental procedure are explained in detail, and the mathematical modelling of the rig is described. Then the obtained coupled electro-mechanical equations of motion are integrated numerically, and a comparison between experimental results and numerical predictions is presented.  相似文献   

8.
半弹簧接触模型及其在边坡破坏计算中的应用   总被引:8,自引:1,他引:7  
冯春  李世海  刘晓宇 《力学学报》2011,43(1):184-192
提出了一种用于判断、描述三维离散块体的接触状态, 计算块体间接触力的半弹簧接触模型. 该模型将一对接触块体分为母块体及子块体, 半弹簧位于母块体上, 由母块体各节点缩进至各母面面内形成, 目标面位于子块体上. 该模型根据半弹簧与目标面的几何关系直接计算接触力, 无需耗费大量时间判断两个块体的接触类型及计算两个块体的接触面积. 该模型可以解决准三维条件下地质体渐进破坏的计算, 将该模型应用于边坡渐进破坏分析,计算结果与实际情况相符.   相似文献   

9.
Tuned liquid dampers (TLDs) utilize sloshing fluid to absorb and dissipate structural vibrational energy. TLDs of irregular or complex tank geometry may be required in practice to avoid tank interference with fixed structural or mechanical components. The literature offers few analytical models to predict the response of this type of TLD, particularly when the fluid depth is small. In this paper, a multimodal model is developed utilizing a Boussinesq-type modal theory which is valid for small TLD fluid depths. The Bateman–Luke variational principle is employed to develop a system of coupled nonlinear ordinary differential equations which describe the fluid response when the tank is subjected to base excitation. Energy dissipation is incorporated into the model from the inclusion of damping screens. The fluid model is used to describe the response of a 2D structure–TLD system when the structure is subjected to external loading and the TLD tank geometry is irregular.Shake table experiments are conducted on a rectangular and chamfered tank subjected to unidirectional base excitation. Comparisons of the experimental and predicted sloshing forces and energy dissipation per cycle indicate that the model is able to predict the fluid response at fluid depth ratios greater than h/L=0.10. Next, structure–TLD system tests are conducted and it is found that the model can predict the structural and TLD responses. The simulated and experimental results show that the TLD tank transfers energy between orthogonal structural sway modes.  相似文献   

10.
The idea behind this paper is to present a numerical procedure for the analysis of masonry walls, based on the application of an asymptotic homogenization method. In this paper, a masonry wall, obtained by the regular repetition of blocks between which mortar is laid, is modelled as a periodic body in the two plane directions. The local problem is formulated for a base cell tied to the geometry of the body and in a position to generate it entirely through some law of its internal composition. Two homogenized models are formulated: the first envisages that both phases, block and mortar, behave in linear elastic fashion; the other envisages that the mortar behaves in linear elastic fashion, while the block is infinitely stiff. The two models are described theoretically and the construction of the model according to the characteristic module is numerically defined. In the case where the infinitely stiff (rigid) block is assumed, not only is the formulation of the model made extremely simple, but any numerical problems tied to great differences in the numerical values characterizing the constitutive modules of the two phases are overcome. In this regard, the domain of applicability of this model is sought both by comparing the homogenized constitutive functions, while varying the ratios of the elastic coefficients of the mortar and the block, with the rigid solution, and by analysing the structural behaviour that derives from the application, or not, of the rigid model, this being done for two sample problems. It should be underlined that the rigid-block model furnishes qualitatively sound structural answers even for very low ratios between the elastic moduli of the two phases composing the wall, and furnishes answers that are quantitatively sound as well for ratios of the order of 30:1, a realistic ratio in the case of ancient walls. The results obtained can be extended to heterogeneous materials in general, that is, to many of the innovatory materials, the composites, where the constituent phases have stiffness characteristics that are rather different and the condition of regularity of alternation of the phases is adequately plausible.  相似文献   

11.
The axisymmetric problem of a penny-shaped crack embedded in an infinite three-dimensional (3D) piezoelectric body is considered. A general formulation of Coulomb traction on the crack surfaces can be obtained based on thermodynamical considerations of electromechanical systems. Three-dimensional electroelastic solutions are derived by the classical complex potential theory when Coulomb traction is taken into account and the poling direction of piezoelectric body is perpendicular to the crack surfaces. Numerical results show that the magnitude of Coulomb tractions can be large, especially when a large electric field in connection with a small mechanical load is applied. Unlike the traditional traction-free crack model, Coulomb tractions induced by an applied electric field influence the Mode I stress intensity factor for a penny-shaped crack in 3D piezoelectric body. Moreover, compared to the current model, the traditional traction-free crack model always overestimates the effect of the applied electric load on the field intensity factors and energy release rates, which has consequences for 3D piezoelectric fracture mechanics.  相似文献   

12.
Exact solutions to the elasticity theory problem in terms of stresses for an incompressible conical body of arbitrary shape under the action of a given concentrated force applied at its vertex are given and analyzed. A solution in terms of stresses with a singularity whose order is higher by one than that in the classical solution is discussed. The surface load at the boundary of the conical body corresponding to such a solution is obtained.  相似文献   

13.
In the last decade, three dimensional discontinuous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a linear displacement function to describe the block movement and deformation, which would cause block expansion under rigid body rotation and thus limit its capability to model block deformation. In this paper, 3D DDA is coupled with tetrahedron finite elements to tackle these two problems. Tetrahedron is the simplest in the 3D domain and makes it easy to implement automatic discretization, even for complex topology shape. Furthermore, element faces will remain planar and element edges will remain straight after deformation for tetrahedron finite elements and polyhedral contact detection schemes can be used directly. The matrices of equilibrium equations for this coupled method are given in detail and an effective contact searching algorithm is suggested. Validation is conducted by comparing the results of the proposed coupled method with that of physical model tests using one of the most common failure modes, i.e., wedge failure. Most of the failure modes predicted by the coupled method agree with the physical model results except for 4 cases out of the total 65 cases. Finally, a complex rockslide example demonstrates the robustness and versatility of the coupled method.  相似文献   

14.
利用人体脑部的CT图像,建立了一个基于人体解剖学结构的脑部的三维有限元模型.模型生物材料特性分别采用线弹性和粘弹性模型描述.在专业碰撞分析软件PAM-CRASH中,利用建成的颅脑三维有限元模型模拟正面颅脑碰撞过程,得到了碰撞过程的能量、速度、加速度、应力曲线和各个时刻的应力云图,并依据模拟碰撞过程得到的结果进行分析,得出结论.  相似文献   

15.
弹性箔片动压径向气体轴承动特性的实验研究   总被引:3,自引:1,他引:2  
建立了新型弹性箔片动压气体轴承性能测试实验台,在静载60N、转速9000r/min条件下进行轴承性能测试试验,通过中心插值法获得轴承中心的扰动速度和加速度,采用时域最小二乘法计算不同激振频率下的8个轴承动态线性刚度和阻尼系数,考察了激振频率对轴承动特性系数的影响.结果表明:轴颈中心扰动轨迹为椭圆形且振幅随动态激振频率增加而增大;刚度和阻尼系数的直接项随动态激振频率增加而减小;交叉刚度和阻尼相对激振频率的变化较小,且其值小于直接项;当激振频率与轴颈转动频率相同时,工频成分的影响较大,轴心扰动幅值明显增大,刚度和阻尼的直接项小于其它频率时的值.  相似文献   

16.
This paper describes a new procedure for the homogenization of orthotropic 3D periodic plates. The theory of Caillerie [Caillerie, D., 1984. Thin elastic and periodic plates. Math. Method Appl. Sci., 6, 159–191.] – which leads to a homogeneous Love–Kirchhoff model – is extended in order to take into account the shear effects for thick plates. A homogenized Reissner–Mindlin plate model is proposed. Hence, the determination of the shear constants requires the resolution of an auxiliary 3D boundary value problem on the unit cell that generates the periodic plate. This homogenization procedure is then applied to periodic brickwork panels.A Love–Kirchhoff plate model for linear elastic periodic brickwork has been already proposed by Cecchi and Sab [Cecchi, A., Sab, K., 2002b. Out-of-plane model for heterogeneous periodic materials: the case of masonry. Eur. J. Mech. A-Solids 21, 249–268 ; Cecchi, A., Sab, K., 2006. Corrigendum to A comparison between a 3D discrete model and two homogenised plate models for periodic elastic brickwork [Int. J. Solids Struct., vol. 41/9–10, pp. 2259–2276], Int. J. Solids Struct., vol. 43/2, pp. 390–392.]. The identification of a Reissner–Mindlin homogenized plate model for infinitely rigid blocks connected by elastic interfaces (the mortar thin joints) has been also developed by the authors Cecchi and Sab [Cecchi A., Sab K., 2004. A comparison between a 3D discrete model and two homogenised plate models for periodic elastic brickwork. Int. J. Solids Struct. 41/9–10, 2259–2276.]. In that case, the identification between the 3D block discrete model and the 2D plate model is based on an identification at the order 1 in the rigid body displacement and at the order 0 in the rigid body rotation.In the present paper, the new identification procedure is implemented taking into account the shear effect when the blocks are deformable bodies. It is proved that the proposed procedure is consistent with the one already used by the authors for rigid blocks. Besides, an analytical approximation for the homogenized shear constants is derived. A finite elements model is then used to evaluate the exact shear homogenized constants and to compare them with the approximated one. Excellent agreement is found. Finally, a structural experimentation is carried out in the case of masonry panel under cylindrical bending conditions. Here, the full 3D finite elements heterogeneous model is compared to the corresponding 2D Reissner–Mindlin and Love–Kirchhoff plate models so as to study the discrepancy between these three models as a function of the length-to-thickness ratio (slenderness) of the panel. It is shown that the proposed Reissner–Mindlin model best fits with the finite elements model.  相似文献   

17.
Application of the plane theory of elasticity to planar crack or angular corner geometries leads to the concept of stress singularity and stress intensity factor, which are the cornerstone of contemporary fracture mechanics. However, the stress state near an actual crack tip or corner vertex is always three-dimensional, and the meaning of the results obtained within the plane theory of elasticity and their relation to the actual 3D problems is still not fully understood. In particular, it is not clear whether the same stress field as found from the well-known 2D solutions of the theory of elasticity do describe the corresponding stress components in a plate made of a sufficiently brittle material and subjected to in-plane loading, and what effect the plate thickness has. In the present study we adopt, so called, first order plate theory to attempt to answer these questions. New features of the elastic solutions obtained within this theory are discussed and compared with 2D analytical results and experimental studies as well as with 3D numerical simulations.  相似文献   

18.
Dynamic numerical simulations were performed for a pyranose ring structure molecule attached to an Atomic Force Microscope (AFM) using a standard semiempirical potential energy surface model. The fundamental static force-extension behavior was first determined using a slow pulling base excitation at the AFM probe. The static force-extension curve displays a stiffness nonlinearity, both softening and hardening, that depends upon level of the pulling force. For the dynamic analysis, a single harmonic base excitation is applied to the AFM probe. A typical evolution process from periodic to aperiodic or chaotic motion obtained by varying the excitation frequency and amplitude is discussed. A strong chaotic response motion was generated for certain system parameters. The numerical analysis shows this chaotic response arises from a molecular structure conformational change.  相似文献   

19.
在自行设计的轴承试验台上研究了轴颈同期涡动和轴承座激振对油膜层流失稳的影响 .结果表明 :随着轴颈偏心的增大 ,涡动倾向增强 ,流体出现层流失稳 ;当涡动倾向较弱时 ,影响油膜层流失稳的主要因素是轴承激振的强度以及低频激振 ,而高频激振对其影响较小 ;但当涡动倾向较强时 ,轴承激振的强度以及激振频率对油膜层流的失稳几乎没有影响  相似文献   

20.
高温真实气体底部流动的NS方程数值计算   总被引:1,自引:0,他引:1  
夏南 《力学季刊》2000,21(3):294-298
本文数值模拟了高超音速飞行时钝锥的底部流动。采用轴对称NS方程并考虑真实气体效应。湍流模型采用修正的Baldwin-Lomax涡粘性代数模型,数值方法空间离散对流项采用显式NND格式,粘性项采用中心差。时间离散采用三阶的龙格-库塔法。真实气体模型采用考虑七种组分四种反应的汉森模型。给出了底部流场的压力和温度分布及各组分的浓度分布。可以看出在近底部区域高速流-绕过拐角就产生一回流旋涡区。由于温度变化很大,气体的热力学特性受气体离解、复合和振动能激发的影响。所以整个流动过程变得十分复杂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号