首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Chang  L.  Yang  C.  Pang  Q. S.  Ai  Q. K.  Chen  L. Y.  Chen  M.  Li  G.  Yang  J. H.  Ma  Y. F. 《Laser Physics》2012,22(5):914-917
We report an 885 nm laser diode (LD) end-pumped high beam quality (M x 2 = 1.322, M y 2 = 1.235) electro-optical Q-switched Nd:YAG laser with TEM00-mode output for the first time. At the absorbed pump power of 59.5 W, a 22.7 W 1064 nm laser was achieved at 10 kHz repetition rate with optical-to-optical efficiency of 38.1%. The maximum pulse energy and shortest pulse width were 5.1 mJ and 14.5 ns at 2 kHz repetition rate, and the calculated peak power was 352 kW.  相似文献   

2.
We demonstrate a diode-pumped Nd:YAG ceramic laser with emission at 946 nm that is passively Q-switched by single-crystal Cr4+:YAG saturable absorber. An average output power of 1.7 W is measured under 18.4 W of incident power using an output mirror with transmission T=4%. The corresponding optical-to-optical efficiency is 9.2%. The laser runs at a pulse repetition rate of 120 kHz and delivers pulses with energy of 14 μJ and duration of 80 ns, which corresponds to a peak power of 175 W.  相似文献   

3.
We demonstrate a 980 nm single-mode Yb-doped fiber laser with a 946 nm Q-switched Nd:YAG laser used as the pump source. The experimental arrangement exploited a 36.5 cm length of fiber and used the output from both ends of the cavity, providing a total average output power of 100 mW with a slope efficiency of 38%. In order to increase the coupling efficiency and the practicability of the fiber laser, another experimental setup with single ended output was studied, producing an average output power of 80 mW from a fiber length of 23.5 cm. The pulse duration is 10 ns at a repetition frequency of 16 kHz. The linewidth of the laser is 4 nm, ranging from 977 to 981 nm.  相似文献   

4.
W.X. Lan  Q.P. Wang  Z.J. Liu  X.Y. Zhang  F. Bai  H.B. Shen  L. Gao 《Optik》2013,124(24):6866-6868
A diode end-pumped passively Q-switched Nd:YAG/KTA intracavity Raman laser is presented. A KTA crystal with a size of 5 mm × 5 mm × 25 mm is used as the Raman active medium and its 234 cm?1 Raman mode is employed to finish the conversion from 1064 nm fundamental laser to 1091 nm Raman laser. A 2 mm thick Cr4+:YAG crystal is used as the saturable absorber. With an LD pump power of 7.5 W, the first-Stokes power of 250 mW is obtained with a pulse repetition frequency of 14.5 kHz. The corresponding diode-to-Stokes conversion efficiency is 3.3% and the pulse energy is 17.2 μJ. Pulse width is measured to be 12.6 ns and peak power is 1.4 kW.  相似文献   

5.
刘欢  巩马理 《物理学报》2009,58(8):5443-5449
报道了一台LD端面抽运Nd:YAG晶体内腔三倍频355 nm激光高效率、高峰值功率准连续输出的全固态紫外激光器.激光腔采用紧凑型平平直腔,腔长仅106 mm.当注入抽运功率为5.73 W、重复频率为9 kHz时,获得163 mW的355 nm激光准连续输出,光光转换效率达到最高2.84%.当注入抽运功率为6.7 W重复频率为5 kHz时,获得最高174 mW的355 nm激光准连续输出,输出功率短期不稳定性为5%,光束质量因子M2为3.79.当注入抽运功率为5.73 W、重复频率为2 kHz时,获得112 mW的355 nm激光准连续输出,峰值功率最高达到9.15 kW.通过采用内腔倍频技术和设计合理的腔结构,实现了中小功率准连续输出的全固态紫外激光器的小型化、便携化,进一步拓宽了紫外激光器的应用领域. 关键词: LD端面抽运 内腔三倍频 Q')" href="#">声光调Q 紫外激光  相似文献   

6.
We report on generation of 946 nm laser pulses of a few nanosecond duration and up to 3.7 kW peak power from a compact diode-pumped passively Q-switched Nd:YAG laser. This power is 2.5 times as much as what previously has been obtained from this type of a laser. The short pulses with the record high peak power may be particularly attractive for laser range finding type applications.  相似文献   

7.
We report on a diode end-pumped passively Q-switched Nd:YAG ceramic laser. By using a Cr4+:YAG single crystal with an 80% initial transmission as the saturable absorber, stable Q-switched pulses with a 126-μJ pulse energy, a 12-ns pulse width, and an 8.4-kHz pulse repetition rate have been obtained. The Q-switching performance of the laser under different saturable absorption strengths and output couplings was experimentally investigated.  相似文献   

8.
We demonstrate the first Cr4+:YAG passively Q-switched c-cut Nd:YVO4 self-Raman laser at 1168.6 nm based on the Stokes shift of 816 cm−1. At the pump power of 4.7 W, the maximum output power of the Stokes line at 1168.6 nm is 270.5 mW, corresponding to an optical conversion efficiency of 5.8%. The pulse width, pulse repetition rate, pulse energy and peak power are 8.8 ns, 35.8 kHz, 7.6 μJ and 0.86 kW, respectively. At the pump of 5.0 W, the Stokes line at 1097.2 nm based on Raman shift of 259 cm−1 also appears.  相似文献   

9.
A quasi-continuous wave laser diode side-pumped passively Q-switched Yb:YAG slab laser with Cr4+:YAG saturable absorber has been demonstrated in order to understand the pulse properties of Yb:YAG crystal. To our knowledge the maximum 69% extraction efficiency is achieved by the system. 44 μJ pulse energy and 1.64 KW peak power with near diffraction-limited beam quality are presented at 25 Hz repetition rate. The build-up time of the Q-giant in the passively Q-switched laser is shown.  相似文献   

10.
A depolarization phenomenon in an electro-optical crystal in a quasi-three-level 946 nm Nd:YAG laser is observed. A compensation of the thermal effects in electro-optical crystals is achieved by employing a quarter-wave plate, with one optical axis parallel to the laser polarization. This technique allows for the production of an electro-optically Q-switched 946 nm Nd:YAG laser at 1 k Hz. A maximum output power of 350 m W at 1 k Hz repetition frequency and 11 ns pulse duration are achieved with an output coupler of 10% transmission under the incident pump power of 11.1 W, corresponding to a peak power of ~32 k W.  相似文献   

11.
In this study, a compact and efficient Nd:YLF laser at 1053 nm has been reported without inserting optical intracavity element to suppress the stronger line of 1047 nm. According to theoretical analysis and calculation, the thermal focal length of 1047 nm is negative while that of 1053 nm is positive in plane-parallel resonator. Hence 1053 nm laser was stable in this cavity. In our experiment, 7.5 W laser output at σ-polarized 1053 nm has been obtained with optical–optical efficiency of 38.8%. As the pulse repetition rate is 20 kHz, the pulse width is 50 ns and the peak power is calculated to be 7.5 kW.  相似文献   

12.
13.
In this paper, we demonstrated an actively Q-switched, radially polarized, and laser-diode end-pumped Nd:YAG laser with an acousto-optic modulator as the Q switch and a photonic crystal grating as the output coupler. The laser generated pulses of 26.4–67.2 ns duration, and the repetition rate can be continuously adjusted from 500 Hz to 9.238 kHz with peak power up to 7.75 kW. Such a radially polarized pulse would facilitate numerous applications.  相似文献   

14.
In this paper, a desirably simple, convenient and inexpensive saturable absorber mirror has been fabricated based on graphene, which has no wavelength selectivity. Moreover, there are no changes in the structure and characteristics of graphene. By inserting the graphene-PMMA SA mirror to the Nd: YAG laser, the shortest pulse width of 260 ns can be obtained with the single-pulse energy of about 8.32 μJ. The experimental results prove that our graphene-PMMA SA mirror is feasible and suitable for Q-switched lasers.  相似文献   

15.
Single-mode high-peak-power passively Q-switched diode-pumped Nd:YAG laser   总被引:1,自引:0,他引:1  
Afzal RS  Yu AW  Zayhowski JJ  Fan TY 《Optics letters》1997,22(17):1314-1316
We have demonstrated an efficient, compact, passively Q-switched single-mode diode-pumped Nd:YAG laser that uses Cr(4+):YAG as a saturable absorber. Linear- and ring-cavity configurations were demonstrated. Pulse energies and widths were, respectively, 1.5mJ and 3.9ns for the linear cavity and 2.1mJ and 12ns for the ring cavity.  相似文献   

16.
We report on a passively Q-switched diode-pumped Nd:YVO4 laser polarized along the a axis (corresponding to the smallest value of emission cross section at 1064 nm), generating 157-μJ pulses with 6.0-ns time duration (>20 kW peak power) and 3.6 W of average power at 1064 nm with good beam quality (M2<1.4). The selection of the polarization was performed by a novel technique relying on the birefringence of the laser crystal and on the misalignment sensitivity of the resonator. Received: 30 September 2002 / Revised version: 22 November 2002 / Published online: 19 March 2003 RID="*" ID="*"Corresponding author. Fax: +39-382/422583, E-mail: agnesi@ele.unipv.it  相似文献   

17.
A diode-end-pumped high repetition rate, high peak power acousto-optical (AO) Q-switched 946 nm Nd:YAG laser was demonstrated in this paper. In our experiments, a 20 mm miniature acousto-optical Q-switch was employed in a 45 mm linear laser cavity for generating the short laser pulse. At a repetition rate of 10 kHz, a maximum average output power of 2.9 W was achieved with a pulse width of 24.4 ns, giving a peak power of 11.9 kW. To the best of our knowledge, this is the highest peak power 946 nm Nd:YAG laser at high repetition rate operation. Moreover, pulse train with good stability was also obtained at the repetition rate of 50 kHz. At an incident pump power of 22.3 W, up to an average output power of 3.5 W pulsed 946 nm laser was generated at 50 kHz with a pulse width of 69 ns, corresponding to an optical conversion efficiency of 15.7% and an average slope efficiency of 24.1%, respectively.  相似文献   

18.
A passively Q-switched laser with Cr4+:YAG/Nd:YAG composite crystal using a corner cube prism cavity has been realized, in which the corner cube prism is the key element as it aids the compensation of the thermal lens effect of laser crystal. Compared with plane–plane mirror cavities under the same conditions, the stability of the laser performance using the corner cube prism cavity was improved remarkably over temperatures ranging from −40 to 65 °C. The decrease of Nd:YAG stimulated emission cross section with temperature was considered to be the main reason for the increase of average output pulse energy under the same cycle for the two different cavities when the ambient temperature changed −40 to 65 °C. The mode properties produced by the prism cavity were analyzed, and the theoretical results were verified by experimental observations.  相似文献   

19.
A pre-pumped passively Q-switched Nd:YAG/Cr:YAG microchip laser is demonstrated with a peak power of 7.5 kW at pulse repetition rate of serveral kilohertzs. The full-width at half-maximum(FWHM)is 734 ps, and the pulse energy is 5.5 μJ with a fundamental spatial mode. In this system, the pre-pumped microchip laser of Nd:YAG/Cr:YAG wafer which is bonded through the thermal-bonding technique has achieved a time jitter value of 12 μs and a Q-switched amplitude instability of 1.26%(15)through the pre-pumped modulation technique.  相似文献   

20.
A compact high-peak-power, high-repetition-rate burst mode laser is achieved by an acousto-optical Q-switched Nd:YVO4 1064 nm laser directly pumped at 878.6 nm. Pulse trains with 10–100 pulses are obtained using acousto-optical Q-switch at repetition rates of 10–100 kHz under a pulsed pumping with a 1 ms duration. At the maximum pump energy of 108.5 mJ, the pulse energy of 10 kHz burst mode laser reaches 44 mJ corresponding to a single pulse energy of 4.4 mJ and an optical-to-optical efficiency of 40.5 %.The maximum peak power of ~468.1 kW at 10 kHz is obtained with a pulse width of 9.4 ns. The beam quality factor is measured to be M 2 ~1.5 and the pulse jitter is estimated to be less than 1 % in both amplitude and time region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号