首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A conservative formulation of the Lorentz force is given here for magnetohydrodynamic (MHD) flows at a low magnetic Reynolds number with the current density calculated based on Ohm’s law and the electrical potential formula. This conservative formula shows that the total momentum contributed from the Lorentz force is conservative when the applied magnetic field is constant. For the case with a non-constant applied magnetic field, the Lorentz force has been divided into two parts: a strong globally conservative part and a weak locally conservative part.The conservative formula has been employed to develop a conservative scheme for the calculation of the Lorentz force on an unstructured collocated mesh. Only the current density fluxes on the cell faces, which are calculated using a consistent scheme with good conservation, are needed for the calculation of the Lorentz force. Meanwhile, a conservative interpolation technique is designed to get the current density at the cell center from the current density fluxes on the cell faces. This conservative interpolation can keep the current density at the cell center conservative, which can be used to calculate the Lorentz force at the cell center with good accuracy. The Lorentz force calculated from the conservative current at the cell center is equivalent to the Lorentz force from the conservative formula when the applied magnetic field is constant, which can conserve the total momentum. We will further prove that the simple interpolation scheme used in the Part I [M.-J. Ni, R. Munipalli, N.B. Morley, P.Y. Huang, M. Abdou, A current density conservative scheme for MHD flows at a low magnetic Reynolds number. Part I. On a rectangular collocated grid system, Journal of Computational Physics, in press, doi:10.1016/j.jcp.2007.07.025] of this series of papers is conservative on a rectangular grid and can keep the total momentum conservative in a rectangular grid.  相似文献   

2.
A consistent, conservative and accurate scheme has been designed to calculate the current density and the Lorentz force by solving the electrical potential equation for magnetohydrodynamics (MHD) at low magnetic Reynolds numbers and high Hartmann numbers on a finite-volume structured collocated grid. In this collocated grid, velocity (u), pressure (p), and electrical potential (φ) are located in the grid center, while current fluxes are located on the cell faces. The calculation of current fluxes on the cell faces is conducted using a conservative scheme, which is consistent with the discretization scheme for the solution of electrical potential Poisson equation. A conservative interpolation is used to get the current density at the cell center, which is used to conduct the calculation of Lorentz force at the cell center for momentum equations. We will show that both “conservative” and “consistent” are important properties of the scheme to get an accurate result for high Hartmann number MHD flows with a strongly non-uniform mesh employed to resolve the Hartmann layers and side layers of Hunt’s conductive walls and Shercliff’s insulated walls. A general second-order projection method has been developed for the incompressible Navier–Stokes equations with the Lorentz force included. This projection method can accurately balance the pressure term and the Lorentz force for a fully developed core flow. This method can also simplify the pressure boundary conditions for MHD flows.  相似文献   

3.
在低磁场雷诺数条件下,基于电势泊松方程,发展了交错网格下可以精确计算电流和洛伦兹力(电磁力)的相容守恒格式。采用压力为变量的原始变量法求解不可压缩Navier-Stokes方程,所计算的电流满足电荷守恒定律,所计算的电磁力满足动量守恒定律。对金属流体在Hartmann数50~5000范围内验证了格式的精确性。交错网格下相容守恒格式的发展为后续MHD稳定性分析、湍流的大涡模拟及直接数值模拟提供很好的选择。  相似文献   

4.
在开源计算流体力学C++工具包OpenFOAM环境下开发了低磁雷诺数条件下的磁流体求解器,并进行了验证。采用投影算法求解动量方程和压力泊松方程;采用非结构网格同位相容守恒算法求解电势泊松方程、感应电流和洛伦兹力;采用边界耦合方法求解流固耦合电势场。通过对均匀磁场下导电方管和导电圆管内的完全发展磁流体层流的数值模拟和解析解的对比,对求解器进行了验证。进一步对非均匀强磁场作用下导电方管和导电圆管内完全发展磁流体层流进行了数值模拟,并与ALEX实验结果进行了比较。数值解和实验结果吻合良好。所开发的求解器可用于复杂结构强磁场作用下磁流体的数值模拟研究。  相似文献   

5.
用直接数值方法对高效液态锂铅包层内的金属流体三维MHD效应进行分析。用投影法对包含洛仑兹力源项的不可压Navier.Stokes方程求解,用相容守恒格式计算电磁力。研究了不同材料的流动通道插件(FCI)对金属磁流体流速、MHD压降和电流流线分布的影响。主要分析了以下三种情况:无FCI插件的通道内的流动状况;加入绝缘材料...  相似文献   

6.
A numerical code has been designed to calculate two-dimensional steady-state magnetohydrodynamic (MHD) flows of incompressible conducting fluids (liquid metals) in linear and circular thin-wall ducts of a rectangular cross section. The flows are caused by the Lorentz force J × B that appears when an electric current passes through a fluid placed in a vertical uniform magnetic field. The code is the generalization of the well-known iteration Gauss-Seidel method to the case of a set of elliptical equations. The method proposed can be used to calculate steady-state flows over wide ranges of Hartmann (Ha = 1–103) and Reynolds (Re = 1–106) numbers.  相似文献   

7.
为研究引流条对磁流体湍流的影响,采用自主开发的低磁雷诺数流固耦合磁流体相干结构模型大涡模拟求解器,对均匀磁场作用下平行层内带引流条导电矩形管和标准导电矩形管中液态金属湍流进行了数值模拟研究。结果表明,外加垂直流动方向的均匀磁场与流动的导电流体相互作用产生与流动方向相反的洛伦兹力,能够抑制磁流体的湍流脉动,这种抑制作用随着哈特曼数增大而增强。在弱导电率条件下,当Re=16350、Ha=212 时,两种管道中的流动均转换为层流流动状态。管道内壁面摩擦系数随着哈特曼数的增大而增大。引流条能在其近壁局部区域增强横向速度,有效激发湍流,但在弱壁面导电率条件下,带引流条导电矩形管壁面摩擦系数较标准矩形管大。  相似文献   

8.
在自适应网格上,采用VOF方法捕捉界面,相容守恒格式计算电流及电磁力,发展了金属流体自由界面MHD数值方法。通过数值模拟磁场作用下不同Hartmann数的气泡在导电溶液中的运动和变形,分析磁场对气泡以及流场的影响,同时给出诱导电场和电流的分布。为进一步深入研究冶金及热核聚变相关的金属流体在强磁场作用下的自由界面流打下基础。  相似文献   

9.
This paper presents an adaptive moving mesh algorithm for two-dimensional (2D) ideal magnetohydrodynamics (MHD) that utilizes a staggered constrained transport technique to keep the magnetic field divergence-free. The algorithm consists of two independent parts: MHD evolution and mesh-redistribution. The first part is a high-resolution, divergence-free, shock-capturing scheme on a fixed quadrangular mesh, while the second part is an iterative procedure. In each iteration, mesh points are first redistributed, and then a conservative-interpolation formula is used to calculate the remapped cell-averages of the mass, momentum, and total energy on the resulting new mesh; the magnetic potential is remapped to the new mesh in a non-conservative way and is reconstructed to give a divergence-free magnetic field on the new mesh. Several numerical examples are given to demonstrate that the proposed method can achieve high numerical accuracy, track and resolve strong shock waves in ideal MHD problems, and preserve divergence-free property of the magnetic field. Numerical examples include the smooth Alfvén wave problem, 2D and 2.5D shock tube problems, two rotor problems, the stringent blast problem, and the cloud–shock interaction problem.  相似文献   

10.
Direct numerical simulation (DNS) of incompressible magnetohydrodynamic (MHD) turbulent channel flow has been performed under the low magnetic Reynolds number assumption.The velocity-electric field and electric-electric field correlations were studied in the present work for different magnetic field orientations.The Kenjeres-Hanjalic (K-H) model was validated with the DNS data in a term by term manner.The numerical results showed that the K-H model makes good predictions for most components of the velocity-electric field correlations.The mechanisms of turbulence suppression were also analyzed for different magnetic field orientations utilizing the DNS data and the K-H model.The results revealed that the dissipative MHD source term is responsible for the turbulence suppression for the case of streamwise and spanwise magnetic orientation,while the Lorentz force which speeds up the near-wall fluid and decreases the production term is responsible for the turbulence suppression for the case of the wall normal magnetic orientation.  相似文献   

11.
We use the induced electric current as the main electromagnetic variable to compute low magnetic Reynolds number magnetohydrodynamic (MHD) flows. The equation for the induced electric current is derived by taking the curl of the induction equation and using Ampère’s law. Boundary conditions on the induced electric current are derived at the interface between the liquid and the thin conducting wall by considering the current loop closing in the wall and the adjacent liquid. These boundary conditions at the liquid–solid interface include the Robin boundary condition for the wall-normal component of the current and an additional equation for the wall potential to compute the tangential current component. The suggested formulation (denominated j-formulation) is applied to three common types of MHD wall-bounded flows by implementing the finite-difference technique: (i) high Hartmann number fully developed flows in a rectangular duct with conducting walls; (ii) quasi-two-dimensional duct flow in the entry into a magnet; and (iii) flow past a magnetic obstacle. Comparisons have been performed against the traditional formulation based on the induced magnetic field (B-formulation), demonstrating very good agreement.  相似文献   

12.
An analytical solution to electrodynamic equations for the electric potential in a locally ionized magnetohydrodynamic (MHD) flow in the nonuniform magnetic field produced by a straight-line conductor is found. Analytical formulas are obtained to evaluate the volume density of the Lorentz force and the integral Lorentz force acting on the locally ionized region of the MHD flow. It is shown that the MHD action on the locally ionized flow in the nonuniform magnetic field can be used to control the elevating force as well as the ratio of the elevating force to the drag force.  相似文献   

13.
The feasibility of using nonmechanical (electrogasdynamic, EGD, and magnetohydrodynamic, MHD) methods to control shock-wave configurations emerging in supersonic flows is investigated. In the EGD method, the flow is heated by a gas discharge; in the MHD one, the flow is influenced by a Lorentz force arising in a gas discharge upon applying a magnetic field. The influence of the gas discharge and MHD interaction on the position of a detached shock wave appearing in a supersonic xenon flow about a semicylindrical body is studied. A discharge is initiated in the immediate vicinity of the leading edge of the body, and the variation of the shock wave position with the intensity of the discharge (discharge current density) is traced when the influence of the EGD action increases and/or an external magnetic field is applied (the influence of the MHD action increases). Preliminary data for a supersonic air flow about a body are presented.  相似文献   

14.
VOF法模拟剪切流动下液滴的变形和断裂运动   总被引:1,自引:0,他引:1  
本文对剪切作用下悬浮液滴在另一种不相融的液体中的变形和断裂过程进行了数值模拟.采用VOF(Volume ofFluid)法中的三维PLIC(Piecewise Linear Interface Calculation)算法实现界面的重构和输运,交错网格下投影法离散表面张力为源项的不可压缩Navier-Stokes方程....  相似文献   

15.
绕圆柱体自由表面磁流体流动和传热的研究   总被引:1,自引:0,他引:1  
本文对在不同雷诺数下,绕圆柱体的磁流体自由表面流动及传热进行了模拟,分析了磁场对绕流圆柱尾迹和涡分离的影响,获得了两种雷诺数下的电磁力密度、流场和温度场分布。结果表明,磁场不仅影响了流动的形态,而且对湍流有抑制作用,降低了自由表面的更新机制,从而减少了传热能力;在相同的Hartmann数下,相比低雷诺数下的流动换热情况,高雷诺数下的湍流不能被完全抑制,自由表面与尾迹的相互作用也较强,因而自由表面换热也较强。  相似文献   

16.
An analytical solution to electrodynamic equations is obtained for the electric potential in a locally ionized magnetohydrodynamic (MHD) flow for a transverse flow past a circular cylinder in the non-uniform magnetic field of a rectilinear conductor. Analytical formulas for computing the volume density of the Lorentz force acting on the flow in a locally ionized MHD flow are obtained for the case of the conducting and nonconducting surfaces of the cylinder. The influence of the Hall parameter and width of the MHD interaction region on the value of the Lorentz force is analyzed. It is demonstrated that the Lorentz force, which accelerates and not decelerates the flow, appears under certain conditions near the surface of the cylinder in the neighborhood of the critical point.  相似文献   

17.
A numerical procedure based on a five-wave MHD model associated with non-ideal, low magnetic Reynolds number MHD flows was developed in the present study for analyzing the flow fields in the MHD generator of a MHD bypass scramjet. The numerical procedure is composed of an entropy conditioned scheme for solving the non-homogeneous Navier-Stokes equations, in conjunction with an SOR method for solving the elliptic equation governing the electrical potential. It was found that a separation would take place near the downstream edge of the second electrode, where the local adverse pressure gradient is large, and the core of the flow field is characterized as a 2-D flow due to the Hartmann effects along the direction of the magnetic field. The electric current lines would be increasingly distorted as the magnetic interactive parameter increases, and even induce an eddy current. Induced eddy current was also found in the different cross-sections along the axial direction, all of these would definitely deteriorate the performance of the MHD generator. The cross-sectional M-shape velocity profile found along the axial direction between the insulating walls is responsible for the formation of the vortex flow at the corner of the insulator cross-section, which, in turn, induces the corner eddy current at the corner. A numerical parametric study was also performed, and the computed performance parameters for the MHD generator suggest that, in order to enhance the performance of MHD generator, the magnetic interaction parameter should be elevated.  相似文献   

18.
In this article, an exponential high-order compact (EHOC) difference scheme on the nine-point stencil is developed for the solution of the coupled equations representing the steady incompressible, viscous magnetohydrodynamic (MHD) flow through a straight channel of rectangular section. A key property of the EHOC scheme is that it has excellent stability and higher accuracy so that the high gradients near the boundary layer areas can be effectively resolved without refining the mesh. Numerical experiments are carried out to validate the performance of the currently proposed scheme. Computation results of the MHD flow in the 2D square-channel problems with different wall conductivities are presented for Hartmann numbers ranging from 10 to 106. The numerical solutions obtained with the newly developed EHOC scheme are also compared with analytic solutions and numerical results by other available methods in the literature.  相似文献   

19.
陈兴旺  施保昌 《中国物理》2005,14(7):1398-1406
绝大多数现有的格子波尔兹曼磁流体动力学模型其实是用可压缩方法来模拟不可压磁流体。而这些可压缩效应在数值模拟中往往会带来意想不到的误差。在这篇文章中,我们提出了一个全新的可用于的不可压格子波尔兹曼磁流体动力学模型,并且进行了哈特曼流的数值模拟。模拟结果与哈特曼流的解析解非常吻合。这个方法需要一个假设条件来消除误差。我们做了大量的数值试验,并且与Dellar教授的模型进行了详细的分析与比较。  相似文献   

20.
Semi-Lagrangian methods have been around for some time, dating back at least to [3]. Researchers have worked to increase their accuracy, and these schemes have gained newfound interest with the recent widespread use of adaptive grids where the CFL-based time step restriction of the smallest cell can be overwhelming. Since these schemes are based on characteristic tracing and interpolation, they do not readily lend themselves to a fully conservative implementation. However, we propose a novel technique that applies a conservative limiter to the typical semi-Lagrangian interpolation step in order to guarantee that the amount of the conservative quantity does not increase during this advection. In addition, we propose a new second step that forward advects any of the conserved quantity that was not accounted for in the typical semi-Lagrangian advection. We show that this new scheme can be used to conserve both mass and momentum for incompressible flows. For incompressible flows, we further explore properly conserving kinetic energy during the advection step, but note that the divergence free projection results in a velocity field which is inconsistent with conservation of kinetic energy (even for inviscid flows where it should be conserved). For compressible flows, we rely on a recently proposed splitting technique that eliminates the acoustic CFL time step restriction via an incompressible-style pressure solve. Then our new method can be applied to conservatively advect mass, momentum and total energy in order to exactly conserve these quantities, and remove the remaining time step restriction based on fluid velocity that the original scheme still had.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号