首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A novel extension of the basis reduction method for kinematic hardening shakedown problem is presented. Firstly, the basis reduction method is implemented based on the modified Newton–Raphson (N-R) method. Then a new technique for the construction of back stress field is introduced, where the simultaneous influence of multiple load corners in shakedown is taken into consideration. Finally, two typical numerical examples are investigated. The results compared with previous works in literatures demonstrated that the proposed method is accurate and the performance in reducing of computation time is significant.  相似文献   

2.
A modified shakedown theorem and its solving technique are presented to involve hydrogen embrittlement of steel into limit and shakedown analysis. Firstly, the shakedown theorem for hydrogen embrittled material is derived from a limited kinematic hardening shakedown theorem and hydrogen enhanced localized plasticity mechanism of hydrogen embrittlement. In the presented theorem, hydrogen’s effect is taken into account by the synergistic action of both strength reduction and stress redistribution. Secondly, a novel solving technique is developed based on the basis reduction method, in which the complicated constraints in the resulting nonlinear mathematical programming are released. At last, three numerical examples are carried out to verify the performance of the proposed method and to reveal hydrogen’s effect on the limit and shakedown load of structure. The numerical results are discussed and compared with those from literatures, which proves the accuracy and high efficiency of the introduced solving technique. It is concluded that the proposed theorem can predict the limit and shakedown load of hydrogen embrittled structure reasonably.  相似文献   

3.
Shakedown analysis is an extension of plastic limit analysis to the case of variable repeated loads and plays a significant role in safety assessment and structural design. This paper presents a solution procedure based on the meshless local Petrov–Galerkin (MLPG) method for lower-bound shakedown analysis of bounded kinematic hardening structures. The numerical implementation is very simple and convenient because it is only necessary to construct an array of nodes in the targeted domain. Moreover, the natural neighbour interpolation (NNI) is employed to construct trial functions for simplifying the imposition of essential boundary conditions. The kinematic hardening behaviour is simulated by an overlay model and the numerical difficulties caused by the time parameter are overcome by introducing the conception of load corner. The reduced-basis technique is applied to solve the mathematical programming iteratively through a sequence of reduced residual stress subspaces with very low dimensions and the resulting non-linear programming sub-problems are solved via the Complex method. Numerical examples demonstrate that the proposed solution procedure is feasible and effective to determine the shakedown loads of bounded kinematic hardening structures as well as unbounded kinematic hardening structures.  相似文献   

4.
In the plane-strain conditions of a long cylinder in rolling line contact with an elastic-perfectly-plastic half-space an exact shakedown limit has been established previously by use of both the statical (lower bound) and kinematical (upper bound) shakedown theorems. At loads above this limit incremental strain growth or “ratchetting” takes place by a mechanism in which surface layers are plastically sheared relative to the subsurface material.In this paper the kinematical shakedown theorem is used to investigate this mode of deformation for rolling and sliding point contacts, in which a Hertz pressure and frictional traction act on an elliptical area which repeatedly traverses the surface of a half-space. Although a similar mechanism of incremental collapse is possible, the behaviour is found to be different from that in two-dimensional line contact in three significant ways: (i) To develop a mechanism for incremental growth the plastic shear zone must spread to the surface at the sides of the contact so that a complete segment of material immediately beneath the loaded area is free to displace relative to the remainder of the half-space, (ii) Residual shear stresses orthogonal to the surface are developed in the subsurface layers, (iii) A range of loads is found in which a closed cycle of alternating plasticity takes place without incremental growth, a condition often referred to as “plastic shakedown”.Optimal upper bounds to both the elastic and plastic shakedown limits have been found for varying coefficients of traction and shapes of the loaded ellipse. The analysis also gives estimates of the residual orthogonal shear stresses which are induced.  相似文献   

5.
考虑外载和温度的运动安定定理   总被引:2,自引:1,他引:1  
本文在物体承受加载和温度变化的条件下,通过虚设屈服面的建立,导出了一个运动安定定理,并以实例介绍了它的应用.  相似文献   

6.
Within the framework of linear plasticity, based on additive decomposition of the linear strain tensor, kinematical hardening can be described by means of extended potentials. The method is elegant and avoids the need for evolution equations. The extension of small strain formulations to the finite strain case, which is based on the multiplicative decomposition of the deformation gradient into elastic and inelastic parts, proved not straight forward. Specifically, the symmetry of the resulting back stress remained elusive. In this paper, a free energy-based formulation incorporating the effect of kinematic hardening is proposed. The formulation is able to reproduce symmetric expressions for the back stress while incorporating the multiplicative decomposition of the deformation gradient. Kinematic hardening is combined with isotropic hardening where an associative flow rule and von Mises yield criterion are applied. It is shown that the symmetry of the back stress is strongly related to its treatment as a truly spatial tensor, where contraction operations are to be conducted using the current metric. The latter depends naturally on the deformation gradient itself. Various numerical examples are presented.  相似文献   

7.
An elastic–plastic material model with internal variables and thermodynamic potential, not admitting hardening states out of a saturation surface, is assumed as a basis to formulate a statical Melan-type shakedown theorem. Grounding on the optimality conditions relative to the shakedown load multiplier problem for a structure subjected to cyclic loads, the impending inadaptation collapse mechanism at the shakedown limit state is analyzed and discussed. It is shown that the adopted model is able to catch ratchetting collapse mode at a structural level. Numerical results for a simple structure are finally reported.  相似文献   

8.
The extension of classical shakedown theorems for hardening plasticity is interesting from both theoretical and practical aspects of the theory of plasticity. This problem has been much discussed in the literature. In particular, the model of generalized standard materials gives a convenient framework to derive appropriate results for common models of plasticity with strain-hardening. This paper gives a comprehensive presentation of the subject, in particular, on general results which can be obtained in this framework. The extension of the static shakedown theorem to hardening plasticity is presented at first. It leads by min-max duality to the definition of dual static and kinematic safety coefficients in hardening plasticity. Dual static and kinematic approaches are discussed for common models of isotropic hardening of limited or unlimited kinematic hardening. The kinematic approach also suggests for these models the introduction of a relaxed kinematic coefficient following a method due to Koiter. Some models for soils such as the Cam-clay model are discussed in the same spirit for applications in geomechanics. In particular, new appropriate results concerning the variational expressions of the dual kinematic coefficients are obtained.  相似文献   

9.
针对接触表面变曲率的特点,引入局部坐标系,构造出局部坐标下残余应力应变场的分布状态,建立了变曲率连续啮合过程中安定状态残余应力的计算方法。该数值方法将弹塑性问题分解为弹性问题和特征应变决定的残余问题,并采用增量映射方法求解特征应变决定的残余问题,可直接得到接触安定状态下的接触残余应力,并随之进行安定极限的判定。采用该数值方法计算了不同曲率处接触点的安定极限,给出了安定极限与摩擦因数之间的关系,并与有关数值结果相比较,验证了该算法的有效性。  相似文献   

10.
含缺陷轴对称体的安定与极限分析   总被引:2,自引:0,他引:2  
利用静力安全定理得到了计算轴对称体安定与极限载荷的统一格式,采用温度参数法构造安定分析所需的残余应力场,为了克服对工程实际问题进行安定分析时解题规模与计算精度的矛盾,针对轴对称体的特点,采用两种线性化方案对屈服面进行线性化处理,即直接内接法和在降维应力偏量空间中对屈服面的线性化处理,使安定分析转化为一线性规划问题,在简化过程中合理选择线性化方案以便使应力校核点接近精确的屈服面;为了减小计算量,在求  相似文献   

11.
A fully nonlinear shakedown analysis is considered for structures undergoing large elastic-plastic strains. The underlying kinematics of finite elastoplasticity are based on the multiplicative decomposition of the deformation gradient into elastic and plastic parts. It is Shown that the notion of a fictitious, self-equilibrated residual stress field of Melan's linear shakesdown theorem has to be replaced by the notion of real, self-equilibrated residual state. Path-dependent and path-independent shakedown theorems are presented that can be realized in an incremental step-by-step procedure using Finite Element codes. The numerical implementation is considered for highly nonlinear truss structures undergoing large cyclic deformations with ideal-plastic, isotropic and kinematic hardening material behavior. Path-dependency of the residual states in the case of non-adaptation and path-independency in the case of shakedown are shown, and the shakedown domain is determined taking into account also the stability boundaries of the structure.  相似文献   

12.
The static and kinematic shakedown of a functionally graded (FG) Bree plate is analyzed. The plate is subjected to coupled constant mechanical load and cyclically varying temperature. The material is assumed linearly elastic and nonlinear isotropic hardening with elastic modulus,yield strength and the thermal expansion coeffcient varying exponentially through the thickness of the plate. The boundaries between the shakedown area and the areas of elasticity,incremental collapse and reversed plasticity are determined,respectively. The shakedown of the counterpart made of homogeneous material with average material properties is also analyzed. The comparison between the results obtained in the two cases exhibits distinct qualitative and quantitative difference,indicating the importance of shakedown analysis for FG structures. Since FG structures are usually used in the cases where severe coupled cyclic thermal and mechanical loadings are applied,the approach developed and the results obtained are significant for the analysis and design of such kind of structures.  相似文献   

13.
Static and kinematic shakedown theorems are given for a class of generalized standard materials endowed with a hardening saturation surface in the framework of strain gradient plasticity. The so-called residual-based gradient plasticity theory is employed. The hardening law admits a hardening potential, which is a C1-continuous function of a set of kinematic internal variables and of their spatial gradients, and is required to satisfy a global sign restriction (but not to be necessarily convex). The totally produced, the accumulated and the freely moving dislocations per unit volume, distinguished as statistically stored and geometrically necessary ones, are in this way accounted for. Like for a generalized standard material, the shakedown safety factor is found to depend on the (generally size dependent) yield and saturation limits, but not on the particular differential-type hardening law of the material.  相似文献   

14.
In this paper, shakedown of a cohesive-frictional half space subjected to moving surface loads is investigated using Melan’s static shakedown theorem. The material in the half space is modelled as a Mohr–Coulomb medium. The sliding and rolling contact between a roller and the half space is assumed to be plane strain and can be approximated by a trapezoidal as well as a Hertzian load distribution. A closed form solution to the elastic stress field for the trapezoidal contact is derived, and is then used for the shakedown analysis. It is demonstrated that, by relaxing either the equilibrium or the yield constraints (or both) on the residual stress field, the shakedown analysis leads to various bounds for the elastic shakedown limit. The differences among the various shakedown load factors are quantitatively compared, and the influence of both Hertzian and trapezoidal contacts for the half space under moving surface loads is studied. The various bounds and shakedown limits obtained in the paper serve as useful benchmarks for future numerical shakedown analysis, and also provide a valuable reference for the safe design of pavements.  相似文献   

15.
本文利用机动法求解固支圆板在循环集中力作用下的安定问题,得到了安定载荷的理论解;利用激光全息的实验方法研究固支圆板的塑性累积现象,测得了安定载荷的上下限,并对实验结果进行了分析研究.  相似文献   

16.
An integrated approach for all necessary variations within direct analysis, variational design sensitivity analysis and shakedown analysis based on Melan’s static shakedown theorem for linear unlimited kinematic hardening material behavior is formulated. Using an adequate formulation of the optimization problem of shakedown analysis the necessary variations of residuals, objectives and constraints can be derived easily. Subsequent discretizations w.r.t. displacements and geometry using e.g. isoparametric finite elements yield the well known ‘tangent stiffness matrix’ and ‘tangent sensitivity matrix’, as well as the corresponding matrices for the variation of the Lagrangian-functional which are discussed in detail. Remarks on the computer implementation and numerical examples show the efficiency of the proposed formulation. Important effects of shakedown conditions in shape optimization with elasto-plastic deformations are highlighted in a comparison with elastic and elasto-plastic material behavior and the necessity of applying shakedown conditions when optimizing structures with elasto-plastic deformations is concluded.  相似文献   

17.
It is of great practical importance to analyze the shakedown of shell structures under cyclic loading, especially of those made of strain hardening materials.In this paper, some further understanding of the shakedown theorem for kinematic hardening materials has been made, and it is applied to analyze the shakedown of shell structures. Though the residual stress of a real state is related to plastic strain, the time-independent residual stress field as we will show in the theorem may be unrelated to the time-independent kinematically admissible plastic strain field . For the engineering application, it will be much more convenient to point this out clearly and definitely, otherwise it will be very difficult. Also we have proposed a new method of proving this theorem. The above theorem is applied to the shakedown analysis of a cylindrical shell with hemispherical ends. According to the elastic solution, various possible residual stress and plastic strain fields, the shakedown analysis of the structure can be reduced to a mathematical programming problem. The results of calculation show that the shakedown load of strain hardening materials is about 30–40% higher than that of ideal plastic materials. So it is very important to consider the hardening of materials in the shakedown analysis, for it can greatly increase the structure design capacity, and meanwhile provide a scientific basis to improve the design of shell structures.  相似文献   

18.
The class of generalized standard materials is not relevant to model the nonassociative constitutive equations. The bipotential approach, based on a possible generalization of Fenchel’s inequality, allows the recovery of the flow rule normality in a weak form of an implicit relation. This defines the class of implicit standard materials. For such behaviours, this leads to a weak extension of the classical bound theorems of the shakedown analysis. In the present paper, we recall the relevant features of this theory. Considering an elastoplastic material with nonlinear kinematic hardening rule, we apply it to the problem of a sample in plane strain conditions under constant traction and alternating torsion in order to determine analytically the interaction curve bounding the shakedown domain. The aim of the paper is to prove the exactness of the solution for this example by comparing it to step-by-step computations of the elastoplastic response of the body under repeated cyclic loads of increasing level. A reliable criterion to stop the computations is proposed. The analytical and numerical solutions are compared and found to be closed one of each other. Moreover, the method allows uncovering an additional ‘2 cycle shakedown curve’ that could be useful for the shakedown design of structure.  相似文献   

19.
The theory of shakedown is applied to obtain an upper estimation of LCF lifetime of structures. A model of elastic viscoplastic material similar to the Perzyna one with isotropic strain hardening and isotropic damage is adopted. Assumptions: viscoplastic strain rate is proportional to the access of the yield function over zero; the rate of damage evolution is equal to a function of hardening and damage parameters with the coefficient of fluidity, as a factor of proportionality; damage process is coupled with the viscoplastic deformation process; the hardening parameter is equal to accumulated viscoplastic deformation. The yield surfaces form a family of self-similar surfaces with the diameter as the parameter. The shakedown condition of the Melan type is formulated relatively to the initial yield surface. Features of the stress path lead to an equation with min–max problem of the mathematical programming in the left side, which determines a safe value of the virtual residual stress. The equation provides an opportunity to compute the maximal value of the strain hardening parameter possible under the prescribed loading program. This value allows to obtain an upper estimate to safe work time of the structure, which results in a sufficient condition of the structure integrity during the prescribed time period. An example of the developed theory application to resolve various problems arising from designing of structures is considered.  相似文献   

20.
The idea that an elastic-plastic structure under given loading history may shake down to some purely elastic state (and hence to a safe state) after a finite amount of initial plastic deformation, can apply to many sophisticated material models with possible allowable changes of additional material characteristics, as has been done in the literature. Despite some claims to the contrary, it is shown; however, that the shakedown theorems in a Melan-Koiter path-independent sense have been extended successfully only for certain elastic-plastic hardening materials of practical significance. Shakedown of kinematic hardening material is determined by the ultimate and initial yield stresses, not the generally plastic deformation history-dependent hardening curve between. The initial yield stress is no longer the convenient one (corresponding to the plastic deformation at the level of 0.2%) as in usual elastic-plastic analysis but to be related to the shakedown safety requirement of the structure and should be as small as the fatigue limit for arbitrary high-cycle loading. Though the ultimate yield strength is well defined in the standard monotonic loading experiment, it also should be reduced to the so-called “high-cycle ratchetting” stress for the path-independent shakedown analysis. A reduced simple form of the shakedown kinematic theorem without time integrals is conjectured for general practical uses. Application of the theorem is illustrated by examples for a hollow cylinder, sphere, and a clamped disk, under variable (including quasiperiodic dynamic) pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号