首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this Part, the extensive parametric studies performed are reported and numerical results are presented for the non-linear vibration, non-linear bending and compressive postbuckling of uniformly distributed and functionally graded fiber reinforced unsymmetric cross-ply and/or antisymmetric angle-ply laminated plates resting on Pasternak elastic foundations under different hygrothermal environmental conditions. The numerical results show that the functionally graded fiber reinforcement has a significant effect on the postbuckling response and load-bending moment curves of plate bending, whereas this effect is less pronounced on the load-deflection curves of plate bending and the linear and non-linear frequencies of the same plate.  相似文献   

2.
3.
Large deflection and postbuckling responses of functionally graded rectangular plates under transverse and in-plane loads are investigated by using a semi-analytical approach. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The plate is assumed to be clamped on two opposite edges and the remaining two edges may be simply supported or clamped or may have elastic rotational edge constraints. The formulations are based on the classical plate theory, accounting for the plate-foundation interaction effects by a two-parameter model (Pasternak-type), from which Winkler elastic foundation can be treated as a limiting case. A perturbation technique in conjunction with one-dimensional differential quadrature approximation and Galerkin procedure are employed in the present analysis. The numerical illustrations concern the large deflection and postbuckling behavior of functional graded plates with two pairs of constituent materials. Effects played by volume fraction, the character of boundary conditions, plate aspect ratio, foundation stiffness, initial compressive stress as well as initial transverse pressure are studied.  相似文献   

4.
Based on the first-order shear deformation plate theory with von Karman non-linearity, the non-linear axisymmetric and asymmetric behavior of functionally graded circular plates under transverse mechanical loading are investigated. Introducing a stress function and a potential function, the governing equations are uncoupled to form equations describing the interior and edge-zone problems of FG plates. This uncoupling is then used to conveniently present an analytical solution for the non-linear asymmetric deformation of an FG circular plate. A perturbation technique, in conjunction with Fourier series method to model the problem asymmetries, is used to obtain the solution for various clamped and simply supported boundary conditions. The material properties are graded through the plate thickness according to a power-law distribution of the volume fraction of the constituents. The results are verified by comparison with the existing results in the literature. The effects of non-linearity, material properties, boundary conditions, and boundary-layer phenomena on various response quantities in a solid circular plate are studied and discussed. It is found that linear analysis is inadequate for analysis of simply supported FG plates which are immovable in radial direction even in the small deflection range. Furthermore, the responses of FG materials under a positive load and a negative load of identical magnitude are not the same. It is observed that the boundary-layer width is approximately equal to the plate thickness with the boundary-layer effect in clamped FG plates being stronger than that in simply supported plates.  相似文献   

5.
The creep buckling and post-buckling of the laminated piezoelectric viscoelastic functionally graded material (FGM) plates are studied in this research. Considering the transverse shear deformation and geometric nonlinearity, the Von Karman geometric relation of the laminated piezoelectric viscoelastic FGM plates with initial deflection is established. And then nonlinear creep governing equations of the laminated piezoelectric viscoelastic FGM plates subjected to an in-plane compressive load are derived on the basis of the elastic piezoelectric theory and Boltzmann superposition principle. Applying the finite difference method and the Newmark scheme, the whole problem is solved by the iterative method. In numerical examples, the effects of geometric nonlinearity, transverse shear deformation, the applied electric load, the volume fraction and the geometric parameters on the creep buckling and post-buckling of laminated piezoelectric viscoelastic FGM plates with initial deflection are investigated.  相似文献   

6.
庞有卿  王爱文  郝育新  陈鸿燕 《应用力学学报》2020,(2):558-565,I0006,I0007
基于高阶函数剪切变形板理论,研究了可移动简支边界条件下功能梯度石墨烯增强复合材料板的自由振动。利用修正的Halpin-Tsai模型估计了复合材料的等效杨氏模量。基于Hamilton原理构建其偏微分方程。通过Navier方法计算得到了板的量纲为一的频率,并与已有成果进行了比较,验证了本文计算模型的优越性。数值计算结果表明:功能梯度石墨烯增强复合材料板的量纲为一的基频受石墨烯小块的分布模式影响很大,随着石墨烯含量的增加而单调增加;固定石墨烯小块的厚度和长宽比,量纲为一的基频随着长厚比的增加而单调增加。  相似文献   

7.
The non-linear response of laminated composite plates under thermomechanical loading is studied using the third-order shear deformation theory (TSDT) that includes classical and first-order shear deformation theories (CLPT and FSDT) as special cases. Geometric non-linearity in the von Kármán sense is considered. The temperature field is assumed to be uniform in the plate. Layers of magnetostrictive material, Terfenol-D, are used to actively control the center deflection. The negative velocity feedback control is used with the constant gain value. The effects of lamination scheme, magnitude of loading, layer material properties, and boundary conditions are studied under thermomechanical loading.  相似文献   

8.
功能梯度碳纳米管增强复合材料是一种新一代的先进复合材料.在这种材料中,碳纳米管作为增强体在空间位置上梯度排布.功能梯度碳纳米管增强复合材料的力学行为已成为近年来材料科学与工程科学的研究热点.本文对功能梯度碳纳米管增强复合材料结构的建模与分析的研究进展进行评述,集中讨论功能梯度碳纳米管增强复合材料梁、板、壳在各种载荷条件下,边界条件下和环境条件下的线性和非线性弯曲、屈曲和后屈曲、振动和动力响应.文中所列成果可以看作是进一步研究的基石.最后,提出需要进一步研究的方向.  相似文献   

9.
An elastic, rectangular, and simply supported, functionally graded material (FGM) plate of medium thickness subjected to transverse loading has been investigated. The Poisson’s ratios of the FGM plates are assumed to be constant, but their Young’s moduli vary continuously throughout the thickness direction according to the volume fraction of constituents defined by power-law, sigmoid, or exponential function. Based on the classical plate theory and Fourier series expansion, the series solutions of power-law FGM (simply called P-FGM), sigmoid FGM (S-FGM), and exponential FGM (E-FGM) plates are obtained. The analytical solutions of P-, S- and E-FGM plates are proved by the numerical results of finite element method. The closed-form solutions illustrated by Fourier series expression are given in Part I of this paper. The closed-form and finite element solutions are compared and discussed in Part II of this paper. Results reveal that the formulations of the solutions of FGM plates and homogeneous plates are similar, except the bending stiffness of plates. The bending stiffness of a homogeneous plate is Eh3/12(1  ν2), while the expressions of the bending stiffness of FGM plates are more complicated combination of material properties.  相似文献   

10.
A two-dimensional solution is presented for bending analysis of simply supported functionally graded ceramic–metal sandwich plates. The sandwich plate faces are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity and Poisson’s ratio of the faces are assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic ceramic material. Several kinds of sandwich plates are used taking into account the symmetry of the plate and the thickness of each layer. We derive field equations for functionally graded sandwich plates whose deformations are governed by either the shear deformation theories or the classical theory. Displacement functions that identically satisfy boundary conditions are used to reduce the governing equations to a set of coupled ordinary differential equations with variable coefficients. Numerical results of the sinusoidal, third-order, first-order and classical theories are presented to show the effect of material distribution on the deflections and stresses.  相似文献   

11.
Steady-state free vibrations, with large amplitude displacements, of variable stiffness composite laminated plates (VSCL) are analysed. The intentions of this research are: (1)?to find out how the natural frequencies and (mode) shapes evolve with the displacement amplitude in this new type of laminated composite material; (2)?to describe modal interactions in VSCL due to energy interchanges under the coupling induced by non-linearity; (3)?to compare the VSCL with traditional, constant stiffness, laminated plates. The VSCL of interest here have curvilinear fibres and the numerical analysis carried out is based on a recently developed p-version finite element with hierarchic basis functions. The element follows first-order shear deformation theory and considers Von Kármán??s non-linear terms. The time domain equations of motion are first reduced using the linear modes of vibration and then transformed to the frequency domain via the harmonic balance method. These frequency domain equations are solved by an arc-length continuation method.  相似文献   

12.
B. Yang  J. Yang  S. Kitipornchai 《Meccanica》2017,52(10):2275-2292
Thermoelastic bending behaviour of novel functionally graded polymer nanocomposite rectangular plate reinforced with graphene nanoplatelets (GPLs) whose weight fraction varies continuously and smoothly along the thickness direction is investigated. The generalized Mian and Spencer method is utilized to obtain the analytical solutions of nanocomposite rectangular plate with two opposite edges simply supported and under a uniformly distributed transverse load and a temperature change. Three GPL distribution patterns are considered. Comparison between the present analytical solutions and those available in literature is carried out to verify the accuracy of our analytical solutions. A parametric study is conducted to examine the effects of GPL’s weight fraction, distribution pattern, geometry and size as well as the temperature change and plate boundary conditions on the stress and deformation fields of the nanocomposite plates. Numerical results show that the addition of GPLs at a very low content can have a significant reinforcing effect on the thermo-mechanical response of the plate.  相似文献   

13.
In this paper, an analytical method is presented to investigate the nonlinear buckling and expansion behaviors of local delaminations near the surface of functionally graded laminated piezoelectric composite shells subjected to the thermal, electrical and mechanical loads, where the mid-plane nonlinear geometrical relation of delaminations is considered. In examples, the effects of thermal loading, electric field strength, the stacking patterns of functionally graded laminated piezoelectric composite shells and the patterns of delaminations on the critical axial loading of locally delaminated buckling are described and discussed. Finally, the possible growth directions of local buckling for delaminated sub-shells are described by calculating the expanding forces along the length and short axis of the delaminated sub-shells.  相似文献   

14.
The sinusoidal shear deformation plate theory, presented in the first part of this paper, is used to study the buckling and free vibration of the simply supported functionally graded sandwich plate. Effects of rotatory inertia are considered. The critical buckling load and the vibration natural frequency are investigated. Some available results for sandwich plates non-symmetric about the mid-plane can be retrieved from the present analysis. The influences of the transverse shear deformation, plate aspect ratio, side-to-thickness ratio and volume fraction distributions are studied. In addition, the effect of the core thickness, relative to the total thickness of the plate, on the critical buckling load and the eigenfrequencies is investigated.  相似文献   

15.
This paper deals with the derivation of a finite element model for the static analysis of functionally graded (FG) plates integrated with a layer of piezoelectric fiber reinforced composite (PFRC) material. The layer of PFRC material acts as the distributed actuator of the FG plates. The Young’s modulus of the FG plate is assumed to vary exponentially along the thickness of the plate while the Poisson’s ratio is assumed to be constant over the domain of the plate. The finite element model has been verified with the exact solutions for both thick and thin plates. Emphasis has been placed on investigating the effect of variation of piezoelectric fiber angle in the PFRC layer on its actuating capability of the FG plates. The finite element solutions also revealed that the activated PFRC layer is more effective in controlling the deformations of the FG plates when the layer is attached to the surface of the FG plate with minimum stiffness than when it is attached to the surface of the same with maximum stiffness.  相似文献   

16.
NONLINEARTHREE-DIMENSIONALANALYSISOFCOMPOSITELAMINATEDPLATES¥(江晓禹,张相周,陈百屏)JiangXiaoyu;(SouthwesternJiaotongUniversity,Chengdu6...  相似文献   

17.
Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years. Bamboo fibers are renowned for their good mechanical properties, abundance, and short cycle growth. As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications, this paper performs a study on the free vibration and buckling response...  相似文献   

18.
19.
A layerwise theory is used to analyze analytically displacements and stresses in functionally graded composite plates in cylindrical bending subjected to thermomechanical loadings. The plates are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity of the plate is assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. The non-linear strain–displacement relations in the von Kármán sense are used to study the effect of geometric non-linearity. The equilibrium equations are solved exactly and also by using a perturbation technique. Numerical results are presented to show the effect of the material distribution on the deflections and stresses.  相似文献   

20.
A recently developed plate theory using the concept of shape function of the transverse coordinate parameter is extended to determine the stress distribution in an orthotropic functionally graded plate subjected to cylindrical bending. The transfer matrix method is presented to derive the shape function. The equations governing the plate deformation are then solved analytically using the transfer matrix method for arbitrary boundary conditions. For a simply supported functionally graded plate, a comparison of the present solution with the exact elasticity solution, the first- and third-order shear deformation plate theories is presented and discussed. It is demonstrated that the present method yields more accurate stresses than the first- and third-order shear deformation theories. The effect of boundary conditions and inhomogeneity of material on the displacements and stresses in functionally graded plates are investigated. A multi-span functionally graded plate with arbitrary boundary conditions is further considered to demonstrate the efficiency of the present method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号