首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A channeling crack confined in an orthotropic film bonded to an orthotropic substrate under a steady-state condition is investigated. The problem is formulated based on a modified Stroh formalism and an orthotropy rescaling technique, in order to determine the necessary material parameters required to describe the steady-state energy release rate. A closed form of the energy release rate is obtained with the exception of the normalized energy release rate for the transformed bimaterial structure that consists of the orthotropic film and isotropic substrate. The normalized energy release rates for the transformed problem are shown to depend on only four material parameters and are numerically calculated using finite element analyses. The periodic channels in the film layer of the bimaterial structure are also considered. The steady-state energy release rates for the periodic channeling cracks are obtained as a function of the ratio of the film thickness to the crack spacing for various combinations of the material parameters.  相似文献   

2.
The asymptotic problem of a kinked interfacial crack in dissimilar anisotropic materials under antiplane deformation is investigated. The linear transformation method for the problem of the anisotropic bimaterial with a straight interface is proposed. The stress intensity factor for the kinked interfacial crack in the anisotropic composite is obtained from the solution of the transformed problem of the kinked interfacial crack in the isotropic bimaterial based on the linear transformation method. The effects of the material parameters as well as the kink angle on the stress intensity factor are discussed from numerical results of the stress intensity factor. The finite element analysis is carried out to verify the stress intensity factor obtained by using the linear transformation. The influence of the material orientations on the stress intensity factor is investigated for the kinked crack in the bimaterial consisting of dissimilar inclined orthotropic materials.  相似文献   

3.
Summary A boundary value problem for two semi-infinite anisotropic spaces with mixed boundary conditions at the interface is considered. Assuming that the displacements are independent of the coordinate x 3, stresses and derivatives of displacement jumps are expressed via a sectionally holomorphic vector function. By means of these relations the problem for an interface crack with an artificial contact zone in an orthotropic bimaterial is reduced to a combined Dirichlet-Riemann problem which is solved analytically. As a particular case of this solution, the contact zone model (in Comninou's sense) is derived. A simple transcendental equation and an asymptotic formula for the determination of the real contact zone length are obtained. The classical interface crack model with oscillating singularities at the crack tips is derived from the obtained solution as well. Analytical relations between fracture mechanical parameters of different models are found, and recommendations concerning their implementation are given. The dependencies of the contact zone lengths on material properties and external load coefficients are illustrated in graphical form. The practical applicability of the obtained results is demonstrated by means of a FEM analysis of a finite-sized orthotropic bimaterial with an interface crack. Received 19 October 1998; accepted for publication 13 November 1998  相似文献   

4.
The fracture problems near the similar orthotropic composite materials are interface crack tip for mode Ⅱ of double disstudied. The mechanical models of interface crack for mode Ⅱ are given. By translating the governing equations into the generalized hi-harmonic equations, the stress functions containing two stress singularity exponents are derived with the help of a complex function method. Based on the boundary conditions, a system of non-homogeneous linear equations is found. Two real stress singularity exponents are determined be solving this system under appropriate conditions about bimaterial engineering parameters. According to the uniqueness theorem of limit, both the formulae of stress intensity factors and theoretical solutions of stress field near the interface crack tip are derived. When the two orthotropic materials are the same, the stress singularity exponents, stress intensity factors and stresses for mode II crack of the orthotropic single material are obtained.  相似文献   

5.
The problem of a crack perpendicularly approaching a bimaterial interface is examined using both global and localapproaches to fracture. The global approach is based on the J-integral with a second parameter, Q, which scales the stress triaxiality ahead of the crack. The local approach is based on either brittle fracture(Beremin model ) or ductile fracture (Rice and Tracey model ). In the first case, the Weibull stress over the plasticzone is calculated. In the second case, the void growth rate is calculated at the tip of the crack over a representativevolume (generally associated with a characteristic length of the material ). After a brief summary of each approach,the results for a crack near an elastically homogeneous, plastically mismatched interface are presented. Thebehaviour of the bimaterial is expressed in relation to the behavior of the homogeneous material. It is shown thatthere is an effect on the crack behavior which depends on the direction of crack propagation, i.e. from the hardermaterial to the softer material or vice versa. This effect is examined as a function of change in yield strength ratioand hardening exponent, n. For the case of brittle fracture, the effect of changing the Weibull modulus, m, is also examined. The models based on the local approach show that both stress- and strain-controlledfracture mechanisms must be accounted for. This implies the necessity of using the two parameters J and Q in the global approach. This is due to the fact that the stress–strain fields ahead of the crack tip areaffected by the nature of the second material.  相似文献   

6.
This article evaluates the effect of material inhomogeneities on the crack-tip driving force in general inhomogeneous bodies and reports results for bimaterial composites. The theoretical model, based on Eshelby material forces, makes no assumptions about the distribution of the inhomogeneities or the constitutive properties of the materials. Inhomogeneities are modeled by making the stored energy have an explicit dependence on the reference coordinates. Then the material inhomogeneity effect on the crack-tip driving force is quantified by the term Cinh, which is the integral of the gradient of the stored energy in the direction of crack growth. The model is demonstrated by two model problems: (i) bimaterial elastic composite using asymptotic solutions and (ii) graded elastic and elastic-plastic compact tension specimen using numerical methods for stress analysis.  相似文献   

7.
In this study, the torsional vibration and stability problems of functionally graded (FG) orthotropic cylindrical shells in the elastic medium, using the Galerkin method was investigated. Pasternak model is used to describe the reaction of the elastic medium on the cylindrical shell. Mixed boundary conditions are considered. The material properties and density of the orthotropic cylindrical shell are assumed to vary exponentially in the thickness direction. The basic equations of the FG orthotropic cylindrical shell under the torsional load resting on the Pasternak-type elastic foundation are derived. The expressions for the critical torsional load and dimensionless torsional frequency parameter of the FG orthotropic cylindrical shell resting on elastic foundations are obtained. The effects of variations of shell parameters, the exponential factor characterizing the degree of material gradient, orthotropy, foundation stiffness and shear subgrade modulus of the foundation on the critical torsional load and dimensionless torsional frequency parameter are examined.  相似文献   

8.
In the present paper, the behavior of an interface crack for a homogeneous orthotropic strip sandwiched between two different functionally graded orthotropic materials subjected to thermal and mechanical loading is considered. It is assumed that interface crack is partly insulated, and the temperature drop across the crack surfaces is the result of the thermal resistance due to the heat conduction through the crack region. The elastic properties of the material are assumed to vary continuously along the thickness direction. The principal directions of orthotropy are parallel and perpendicular to the crack orientation. The complicated mixed boundary problems of equations of heat conduction and elasticity are converted analytically into singular integral equations, which are solved numerically. The main objective of the paper is to study the effects of material nonhomogeneity parameters and the dimensionless thermal resistance on the thermal stress intensity factors for the purpose of gaining better understanding of the thermal behavior of graded layer.  相似文献   

9.
Based on mechanics of anisotropic material, the dynamic crack propagation problem of I/II mixed mode crack in an infinite anisotropic body is investigated. Expressions of dynamic stress intensity factors for modes I and II crack are obtained. Components of dynamic stress and dynamic displacements around the crack tip are derived. The strain energy density theory is used to predict the dynamic crack extension angle. The critical strain energy density is determined by the strength parameters of anisotropic materials. The obtained dynamic crack tip fields are unified and applicable to the analysis of the crack tip fields of anisotropic material, orthotropic material and isotropic material under dynamic or static load. The obtained results show Crack propagation characteristics are represented by the mechanical properties of anisotropic material, i.e., crack propagation velocity M and fiber direction α. In particular, the fiber direction α and the crack propagation velocity M give greater influence on the variations of the stress fields and displacement fields. Fracture angle is found to depend not only on the crack propagation but also on the anisotropic character of the material.  相似文献   

10.
The objective is to investigate energy dissipation mechanisms that operate at different length scales during fracture in ductile materials. A dimensional analysis is performed to identify the sets of dimensionless parameters which contribute to energy dissipation via dislocation-mediated plastic deformation at a crack tip. However, rather than using phenomenological variables such as yield stress and hardening modulus in the analysis, physical variables such as dislocation density, Burgers vector and Peierls stress are used. It is then shown via elementary arguments that the resulting dimensionless parameters can be interpreted in terms of competitions between various energy dissipation mechanisms at different length scales from the crack tip; the energy dissipations mechanisms are cleavage, crack tip dislocation nucleation and also dislocation nucleation from a Frank-Read source. Therefore, the material behavior is classified into three groups. The first two groups are the well-known intrinsic brittle and intrinsic ductile behavior. The third group is designated to be extrinsic ductile behavior for which Frank-Read dislocation nucleation is the initial energy dissipation mechanism. It is shown that a material is predicted to exhibit extrinsic ductility if the dimensionless parameter disl1/2 (b is Burgers vector, ρdisl is dislocation density) is within a certain range defined by other dimensionless parameters, irrespective of the competition between cleavage and crack tip dislocation nucleation. The predictions compare favorably to the documented behavior of a number of different classes of materials.  相似文献   

11.
A method for determining the elastic constants of an isotropic material, based on crack edge displacement data, is extended to an orthotropic material. Complex potentials are used to obtain the stresses and displacements for plane strain. Mode I crack problems in three mutually orthogonal planes are considered and solved. In particular, the expressions of crack edge displacements are obtained in an explicit form. An iterative statistical identification method, based on a Bayesan approach, is used to identify the elastic constants of an orthotropic medium from the Mode I crack displacements measured from the mid-point of the crack. Some graphics are displayed to illustrate the convergence of the pertinent parameters and the approach of the analytical displacements to their experimental values.  相似文献   

12.
The thermal fracture of a bimaterial consisting of a homogeneous material and a functionally graded material (FGM) with a system of internal cracks and an interface crack is investigated. The bimaterial is subjected to a heat flux. The thermal properties of FGM are assumed to be continues functions of the thickness coordinate, while the elastic properties are constants. The method of the solution is based on the singular integral equations. For a special case where the interface crack is much larger than the internal cracks in the FGM the asymptotic analytical solution of the problem is obtained as series in a small parameter (the ratio between sizes of the internal and interface crack) and the thermal stress intensity factors (TSIFs) are derived as functions of geometry of the problem and material characteristics. A parametric analysis of the effects of the location and orientation of the cracks and of the inhomogeneity parameter of FGM’s thermal conductivity on the TSIFs is performed. The results are applicable to such kinds FGMs as ceramic/ceramic FGMs, e.g., TiC/SiC, MoSi2/Al2O3 and MoSi2/SiC, and also some ceramic/metal FGMs.  相似文献   

13.
基于双材料垂直于界面V型缺口理论,给出了单一材料和双材料裂纹问题、V型缺口问题应力强度因子的统一定义,得到了应力外推法计算双材料K_I的公式,数值算例验证了本文方法的有效性.以双材料单向拉伸和三点弯曲模型为对象,深入研究了双材料中弹性模量、泊松比、缺口深度、缺口张角对缺口尖端奇异应力场的影响,获得了一定范围内各种参数变化对缺口尖端奇异应力场的影响规律,为异体材料形成的V型缺口在应力断料中的应用提供了必要的参考依据.  相似文献   

14.
The fracture behaviors near the mode Ⅱ interface crack tip for orthotropic bimaterial are studied. The non-oscillatory field, where the stress singularity exponent is a real number, is discussed by the complex function method and the undetermined coefficient method. From the research fracture problems, the stress functions with ten undetermined coefficients and an unknown singularity exponent are introduced when?_1 0 and ?_2 0. By the existence theorem of non-trival solutions for the system of eight homogeneous linear equations, the characteristic equation, the stress singularity exponent, and the discriminating condition of the non-oscillatory singularity are found.By the uniqueness theorem of the solutions for the system of twelve non-homogeneous linear equations with ten unknowns, the ten undermined coefficients in the stress functions are uniquely determined. The definitions of the stress intensity factors are given with the help of one-sided limit, and their theoretical formulae are deduced. The analytic solutions of the stresses near the mode Ⅱ interface crack tip are derived. The classical results for orthotropic material are obtained.  相似文献   

15.
A mode III crack cutting perpendicularly across the interface between two dissimilar semi-infinite magnetoelectroelastic solid is studied under the combined loads of a line force, a line electric charge and a line magnetic charge at an arbitrary location. The impermeable conditions are implied on the crack faces. The technique developed in literature for the elastic bimaterial with a crack cutting interface is exploited to treat the magnetoelectroelastic bimaterial. The Riemann-Hilbert problem can be formulated and solved based on complex variable method. Analytical solutions can be obtained for the entire plane. The intensity factors around crack tips can be defined for the elastic, electric and magnetic fields. It shows that, no matter where the load position is, the electric displacement intensity factors (EDIFs), as well as the magnetic induction intensity factors (MIIFs), are identical in magnitude but opposite in sign for both crack tips, on condition that a line force is solely applied. Alternatively, if only a line electric charge is considered, then the stress intensity factors (SIFs) and the MIIFs exhibit the behavior. Likewise, if only a line magnetic charge is applied, it turns to the SIFs and the EDIFs instead. In addition, the dependence of the intensity factors is graphically shown with respect to the location of a line force. It is found that the SIF for a crack tip tends to be infinite if the applied force is approaching the tip itself, but the EDIF, with the complete opposite trend, tends to be vanishing. Finally, focusing on the more practical case of piezoelectric/piezomagnetic bimaterial, variation of the SIF along with the moduli as well as the piezo constitutive coefficients is explored. These analyses may provide some guidance for material selection by minimizing the SIF. It is also believed that the results obtained in this paper can serve as the Green’s function for the dissimilar magnetoelectroelastic semi-infinite bimaterial with a crack cutting the interface under general magnetoelectromechanical loads.  相似文献   

16.
Bueckner‘s work conjugate integral customarily adopted for linear elastic materials is established for an interface crack in dissimilar anisotropic materials. The difficulties in separating Stroh‘s six complex arguments involved in the integral for the dissimilar materials are overcome and then the explicit function representations of the integral are given and studied in detail. It is found that the pseudo-orthogonal properties of the eigenfunction expansion form (EEF) for a crack presented previously in isotropic elastic cases, in isotopic bimaterial cases, and in orthotropic cases are also valid in the present dissimilar arbitrary anisotropic cases. The relation between Bueckner‘s work conjugate integral and the J-integral in these cases is obtained by introducing a complementary stressdisplacement state. Finally, some useful path-independent integrals and weight functions are proposed for calculating the crack tip parameters such as the stress intensity factors.  相似文献   

17.
叠层结构陶瓷强韧化设计的力学分析   总被引:4,自引:0,他引:4  
基于梁的理论和裂纹在异材界面上拐折与扩展条件,对叠层结构陶瓷弯曲试件的强度与韧性进行了力学分析,获得叠层结构中陶瓷基片和界面层的材料性能、结构几何参数与叠层结构弯曲强度、韧性间的定量解析关系,给出相应的影响曲线,并对Si3N4/BN叠层结构四点弯曲试样断裂功的理论值与实验结果作对比讨论。  相似文献   

18.
In this paper, thermal response of an orthotropic functionally graded coating-substrate structure with a partially insulated interface crack under heat flux supply is considered. It is assumed that there exists thermal resistance to heat conduction through the crack region. The mixed boundary value problems are reduced to a system of singular integral equations and solved numerically. Higher order asymptotic terms for the singular integral kernels are considered to improve the accuracy and the convergence efficiency of the numerical integrals. Numerical results are presented to show the effects of the orthotropy parameters, thermo-elastic nonhomogeneity parameters, and dimensionless thermal resistance on the temperature distribution and the thermal stress intensity factors (SIFs).  相似文献   

19.
Two systems of non-homogeneous linear equations with 8 unknowns are obtained.This is done by introducing two stress functions containing 16 undetermined coefficients and two real stress singularity exponents with the help of boundary conditions.By solving the above systems of non-homogeneous linear equations,the two real stress singularity exponents can be determined when the double material parameters meet certain conditions.The expression of the stress function and all coefficients are obtained based on the uniqueness theorem of limit.By substituting these parameters into the corresponding mechanics equations,theoretical solutions to the stress intensity factor,the stress field and the displacement field near the crack tip of each material can be obtained when both discriminants of the characteristic equations are less than zero.Stress and displacement near the crack tip show mixed crack characteristics without stress oscillation and crack surface overlapping.As an example,when the two orthotropic materials are the same,the stress singularity exponent,the stress intensity factor,and expressions for the stress and the displacement fields of the orthotropic single materials can be derived.  相似文献   

20.
The anti-plane problem of N arc-shaped interfacial cracks between a circular piezoelectric inhomogeneity and an infinite piezoelectric matrix is investigated by means of the complex variable method. Cracks are assumed to be permeable and then explicit expressions are presented, respectively, for the electric field on the crack faces, the complex potentials in media and the intensity factors near the crack-tips. As examples, the corresponding solutions are obtained for a piezoelectric bimaterial system with one or two permeable arc-shaped interfacial cracks, respectively. Additionally, the solutions for the cases of impermeable cracks also are given by treating an impermeable crack as a particular case of a permeable crack. It is shown that for the case of permeable interfacial cracks, the electric field is jumpy ahead of the crack tips, and its intensity factor is always dependent on that of stress. Moreover all the field singularities are dependent not only on the applied mechanical load, but also on the applied electric load. However, for the case of a homogeneous material with permeable cracks, all the singular factors are related only to the applied stresses and material constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号