首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents and analyzes the behaviour of TRIP 1000 steel sheets subjected to low velocity perforation by conical projectiles. The relevance of this material resides in the potential transformation of retained austenite to martensite during impact loading. This process leads to an increase in strength and ductility of the material. However, this transformation takes place only under certain loading conditions strongly dependent on the initial temperature and deformation rate. In order to study the material behaviour under impact loading, perforation tests have been performed using a drop weight tower. Experiments were carried out at two different initial temperatures T0 = 213 K and T0 = 288 K, and within the range of impact velocities 2.5 m/s ? V0 ? 4.5 m/s. The experimental setup enabled the measuring of impact velocity, residual velocity, load-time history and failure mode. In addition, dry and lubricated contacts between the striker and the plate have been investigated. Finally, by using X-ray diffraction it has been shown that no martensitic transformation takes place during the perforation process. The causes involving the none-appearance of martensite are examined.  相似文献   

2.
Temperature fluctuations occur due to thermal mixing of hot and cold streams in the T-junctions of the piping system in nuclear power plants, which may cause thermal fatigue of piping system. In this paper, three-dimensional, unsteady numerical simulations of coolant temperature fluctuations at a mixing T-junction of equal diameter pipes were performed using the large eddy simulation (LES) turbulent model. The experiments used in this paper to benchmark the simulations were performed by Hitachi Ltd. The calculated normalized mean temperatures and fluctuating temperatures are in good agreement with the measurements. The influence of the time-step ranging from 100 Hz to 1000 Hz on the numerical simulation results was explored. The simulation results indicate that all the results with different frequencies agree well with the experimental data. Finally, the attenuation of fluctuation of fluid temperature was also investigated. It is found that, drastic fluctuation occurs within the range of less than L/D = 4.0; the fluctuation of fluid temperature does not always attenuate from the pipe center to the wall due to the continuous generation of vortexes. At the top wall, the position of L/D = 1.5 has a minimum normalized mean temperature and a peak value of root-mean square temperature, whereas at the bottom wall, the position having the same characteristics is L/D = 2.0.  相似文献   

3.
Results showing the dynamic response of a vertical long flexible cylinder vibrating at low mode numbers are presented in this paper. The model had an external diameter of 16 mm and a total length of 1.5 m giving an aspect ratio of about 94, with Reynolds numbers between 1200 and 12 000. Only the lower 40% of its length was exposed to the water current in the flume and applied top tensions varied from 15 to 110 N giving fundamental natural frequencies in the range from 3.0 to 7.1 Hz. Reduced velocities based on the fundamental natural frequency up to 16 were reached. The mass ratio was 1.8 and the combined mass–damping parameter about 0.05. Cross-flow and in-line amplitudes, xy trajectories and phase synchronisation, dominant frequencies and modal amplitudes are reported. Cross-flow amplitudes up to 0.7 diameters and in-line amplitudes over 0.2 were observed with dominant frequencies given by a Strouhal number of 0.16.  相似文献   

4.
The heat transfer and pressure drop were experimentally investigated in a coiled wire inserted tube in turbulent flow regime. The coiled wire has equilateral triangular cross section and was inserted separately from the tube wall. The experiments were carried out with three different pitch ratios (P/D = 1, 2 and 3) and two different ratio of equilateral triangle length side to tube diameter (a/D = 0.0714 and 0.0892) at a distance (s) of 1 mm from the tube wall in the range of Reynolds number from 3500 to 27,000. Uniform heat flux was applied to the external surface of the tube and air was selected as fluid. The experimental results obtained from a smooth tube were compared with those from the studies in literature for validation of experimental set-up. The use of coiled wire inserts leads to a considerable increase in heat transfer and pressure drop over the smooth tube. The Nusselt number rises with the increase of Reynolds number and wire thickness and the decrease of pitch ratio. The highest overall enhancement efficiency of 36.5% is achieved for the wire with a/D = 0.0892 and P/D = 1 at Reynolds number of 3858. Consequently, the experimental results reveal that the best operating regime of all coiled wire inserts is detected at low Reynolds number, leading to more compact heat exchanger.  相似文献   

5.
This paper constitutes the second part of our experimental study of the thermo-mechanical behavior of superelastic NiTi shape memory alloy cables. Part I introduced the fundamental, room temperature, tensile responses of two cable designs (7 × 7 right regular lay, and 1 × 27 alternating lay). In Part II, each cable behavior is studied further by breaking down the response into the contributions of its hierarchical subcomponents. Selected wire strands were extracted from the two cable constructions, and their quasi-static tension responses were measured using the same experimental setup of Part I. Consistent with the shallow wire helix angles in the 7 × 7 construction, the force–elongation responses of the core wire, 1 × 7 core strand and full 7 × 7 cable were similar on a normalized basis, with only a slight decrease in transformation force plateaus and slight increase in plateau strains in this specimen sequence. By contrast, each successive 1 × 27 component (1 × 6 core strand, 1 × 15 strand, and full cable) included an additional outer layer of wires with a larger number of wires, greater helix radius, and deeper helix angle, so the normalized axial load responses became significantly more compliant. Each specimen in the sequence also exhibited progressively larger strains at failure, reaching 40% strain in the full 1 × 27 cable.Stress-induced phase transformations involved localized strain/temperature and front propagation in all of the tested 7 × 7 components but none of the 1 × 27 components aside from the 1 × 27 core wire. Stereo digital image correlation measurements revealed finer features within a global transformation front of the 1 × 7 core strand than the 7 × 7 cable, consisting of an staggered pattern of individual wire fronts that moved in lock-step during elongation. Although the 1 × 27 multi-layer strands exhibited temperature/strain localizations in a distributed pattern during transformations, the localizations did not propagate and their cause was traced back to contact indentations (stress concentrations) arising from the cable’s fabrication. The normalized axial torque responses of the multi-layer 1 × 27 components during transformation were distinctly non-monotonic and complex, due to the alternating handedness of the layers. Force and torque contributions of individual wire layers were deduced by subtracting 1 × 27 component responses, which helped to clarify the transformation kinetics within each layer and explain the unusual force and torque undulations seen in the 1 × 27 cable response of Part I.  相似文献   

6.
Fatigue properties of age-hardened Al alloy 2017-T4 under ultrasonic loading frequency (20 kHz) were investigated and compared with the results under conventional loading of rotating bending (50 Hz). The growth of a crack retarded at about 500 µm in surface length under ultrasonic loading, while at about 20 µm under rotating bending. Although striations being a typical fracture mechanism were observed under conventional loading, most of fracture surface was covered with many facets under ultrasonic loading. These facets were also observed under rotating bending in nitrogen gas. The difference in growth mechanism depending on the loading frequency and the retardation of a crack growth under ultrasonic loading may be caused by the environment at the crack tip due to high crack growth rate under ultrasonic loading.  相似文献   

7.
In this paper, interlaminar crack initiation and propagation under mode-I with static and fatigue loading of a composite material are experimentally assessed for different test temperatures. The material under study is made of a 3501-6 epoxy matrix reinforced with AS4 unidirectional carbon fibres, with a symmetric laminate configuration [0°]16/S. In the experimental programme, DCB specimens were tested under static and fatigue loading. Based on the results obtained from static tests, fatigue tests were programmed to analyse the mode-I fatigue behaviour, so the necessary number of cycles was calculated for initiation and propagation of the crack at the different temperatures. GN curves were determined under fatigue loading, N being the number of cycles at which delamination begins for a given energy release rate. GICmaxa, aN and da/dNa curves were also determined for different Gcr rates (90%, 85%, 75%, etc.) and different test temperatures: 90 °C, 50 °C, 20 °C, 0 °C, ?30 °C and ?60 °C.  相似文献   

8.
The mean wake of a surface-mounted finite-height square prism was studied experimentally in a low-speed wind tunnel to explore the combined effects of incidence angle (α) and aspect ratio (AR). Measurements of the mean wake velocity field were made with a seven-hole pressure probe for finite square prisms of AR = 9, 7, 5 and 3, at a Reynolds number of Re = 3.7 × 104, for incidence angles from α = 0° to 45°. The relative thickness of the boundary layer on the ground plane, compared to the prism width, was δ/D = 1.5. As the incidence angle increases from α = 0° to 15°, the mean recirculation zone shortens and the mean wake shifts in the direction opposite to that of the mean lift force. The downwash is also deflected to this side of the wake and the mean streamwise vortex structures in the upper part of the wake become strongly asymmetric. The shortest mean recirculation zone, and the greatest asymmetry in the mean wake, is found at the critical incidence angle of αcritical  15°. As the incidence angle increases from α = 15° to 45°, the mean recirculation zone lengthens and the mean streamwise vortex structures regain their symmetry. These vortices also elongate in the wall-normal direction and become contiguous with the horseshoe vortex trailing arms. The mean wake of the prism of AR = 3 has some differences, such as an absence of induced streamwise vorticity near the ground plane, which support its classification as lying below the critical aspect ratio for the present flow conditions.  相似文献   

9.
The large deflection problem of a bending circular plate is reduced to a nonlinear ordinary differential equation, and a type of pseudo-linearization is used to obtain the final solution. An innovative iteration technique is suggested. The initial iteration values of some functions for a given loading are adopted from the previous solution for a lower loading. This will significantly extend the range of solution for the non-dimensional loading. Previously, the solution for the non-dimensional loading Q = 100 was obtained. However, in this paper the solution for the non-dimensional loading Q = 1000 is achieved.  相似文献   

10.
A thin shell theoretical solution of two normally intersecting cylindrical shells subjected to thrust-out force and three kinds of moments transmitted through branch pipes is presented in this paper. The solutions of modified Morley equation, which can be applicable up to ρ0 = d/D  0.8 and λ = d/(DT)1/2  8 and the order of accuracy is raised to O(T/D), for the four loading cases are given. The accurate continuity conditions of generalized forces and displacements at the intersecting curve of two cylindrical shells for the four loading cases and the condition of the uniqueness of displacements are derived in this paper. The presented results are verified by experimental and numerical results successfully. They are in agreement with WRC Bulletin 297 when d/D is small.  相似文献   

11.
The flow distribution across automotive exhaust catalysts has a significant effect on their conversion efficiency. The exhaust gas is pulsating and flow distribution is a function of engine operating condition, namely speed (frequency) and load (flow rate). This study reports on flow measurements made across catalyst monoliths placed downstream of a wide-angled planar diffuser presented with pulsating flow. Cycle-resolved particle image velocimetry (PIV) measurements were made in the diffuser and hot wire anemometry (HWA) downstream of the monoliths. The ratio of pulse period to residence time within the diffuser (defined as the J factor) characterises the flow distribution. During acceleration the flow remained attached to the diffuser walls for some distance before separating near the diffuser inlet later in the cycle. Two cases with J  3.5 resulted in very similar flow fields with the flow able to reattach downstream of the separation bubbles. With J = 6.8 separation occurred earlier with the flow field resembling, at the time of deceleration, the steady flow field. Increasing J from 3.5 to 6.8 resulted in greater flow maldistribution within the monoliths; steady flow producing the highest maldistribution in all cases for the same Re.  相似文献   

12.
In the present study, flow control mechanism of single groove on a circular cylinder surface is presented experimentally using Particle image velocimetry (PIV). A square shaped groove is patterned longitudinally on the surface of the cylinder with a diameter of 50 mm. The flow characteristics are studied as a function of angular position of the groove from the forward stagnation point of the cylinder within 0°  θ  150°. In the current work, instantaneous and time-averaged flow data such as vorticity, ω streamline, Ψ streamwise, u/Uo and transverse, v/Uo velocity components, turbulent kinetic energy, TKE and RMS of streamwise, urms and transverse, vrms velocity components are utilized in order to present the results of quantitative analyses. Furthermore, Strouhal numbers are calculated using Karman vortex shedding frequency, fk obtained from single point spectral analysis. It is concluded that a critical angular position of the groove, θ = 80° is observed. The flow separation is controlled within 0°  θ < 80°. At θ = 80°, the flow separation starts to occur in the upstream direction. The instability within the shear layer is also induced on grooved side of the cylinder with frequencies different than Karman vortex shedding frequency, fk.  相似文献   

13.
The prediction and control of friction-induced vibration requires a sufficiently accurate constitutive law for dynamic friction at the sliding interface: for linearised stability analysis, this requirement takes the form of a frictional frequency response function. Systematic measurements of this frictional frequency response function are presented for small samples of nylon and polycarbonate sliding against a glass disc. Previous efforts to explain such measurements from a theoretical model have failed, but an enhanced rate-and-state model is presented which is shown to match the measurements remarkably well. The tested parameter space covers a range of normal forces (10–50 N), of sliding speeds (1–10 mm/s) and frequencies (100–2000 Hz). The key new ingredient in the model is the inclusion of contact stiffness to take into account elastic deformations near the interface. A systematic methodology is presented to discriminate among possible variants of the model, and then to identify the model parameter values.  相似文献   

14.
Spatial and temporal variations of channel wall temperature during flow boiling microchannel flows using infrared thermography are presented and analyzed. In particular, the top channel wall temperature in a branching microchannel silicon heat sink is measured non-intrusively. Using this technique, time-averaged temperature measurements, with a spatial resolution of 10 μm, are presented over an 18 mm × 18 mm area of the heat sink. Also presented, within a specific sub-region of the heat sink, are intensity maps that are recorded at a rate of 120 frames per second. Time series data at selected point locations in this sub-region are analyzed for their frequency content, and dominant temperature fluctuations are extracted using proper orthogonal decomposition.Results at low-vapor-quality boiling condition indicate that temperatures can be determined from recorded radiation intensities with a temperature uncertainty varying from 0.9 °C at 25 °C to 1.0 °C at 125 °C. The time series data indicate periodic wall temperature fluctuations of approximately 2 °C that are attributed to the passage of vapor slugs. A dominant band of frequencies around 2–4 Hz is suggested by the frequency analysis. Proper orthogonal decomposition results indicate that first six orthogonal modes account for approximately 90% of the variance in temperature. The first mode reconstruction accounts for temporal variations in the dataset in the sub-region analyzed; however the magnitude of fluctuations and spatial variations in temperature are not accurately captured. A reconstruction using the first 25 modes is considered sufficient to capture both the temporal and spatial variations in the data.  相似文献   

15.
We study the behaviour of a single integral constitutive equation, capable of providing analytic expressions for the viscoelastic stress in extensional flows of a variety of deformation histories and geometries, ranging from uniaxial to equibiaxial. It is based on the use of a stress damping function, with a power-law dependence on the elongation, λ: h(λ) = 1/λn. The parameter n (0  n  2) signifies the nonlinear viscoelastic character of the material and, therefore, is an inverse measure of network connectivity strength of the underlying microstructure. This renders the constitutive approach applicable to incompressible polymers of a variable degree of branching, strain hardening and stress thinning behavior. Methods of connecting n with the macromolecular architecture and the alignment strength of the flow are also explored.  相似文献   

16.
Crack propagation and coalescence processes are the fundamental mechanisms leading to progressive failure processes in rock masses, in which parallel non-persistent rock joints are commonly involved. The coalescence behavior of the latter, which are represented as pre-existing coplanar flaws (cracks), is numerically investigated in the present study. By using AUTODYN as the numerical tool, the present study systematically simulates the coalescence of two pre-existing coplanar flaws in rock under compression. The cumulative damage failure criterion is adopted in the numerical models to simulate the cumulative damage process in the crack initiation and propagation. The crack types (shear or tensile) are identified by analyzing the mechanics information associated with the crack initiation and propagation processes. The simulation results, which are generally in a good accordance with physical experimental results, indicate that the ligament length and the flaw inclination angle have a great influence on the coalescence pattern. The coalescence pattern is relatively simple for the flaw arrangements with a short ligament length, which becomes more complicated for those with a long ligament length. The coalescence trajectory is composed of shear cracks only when the flaw inclination angle is small (such as β ? 30°). When the pre-existing flaws are steep (such as β ? 75°), the coalescence trajectory is composed of tensile cracks as well as shear cracks. When the inclination angle is close to the failure angle of the corresponding intact rock material, and the ligament length is not long (such as L ? 2a), the direct shear coalescence is the more favorable coalescence pattern. In the special case that the two pre-existing flaws are vertical, the model will have a direct tensile coalescence pattern when the ligament length is short (L ? a), while the coalescence between the two inner flaw tips is not easy to achieve if the ligament length is long (L ? 2a).  相似文献   

17.
This paper investigates periodic group crack problems in an infinite plate. The periodic group crack is composed of infinite groups with numbering from j = −∞, …, −2, −1, 0, 1, 2, …, to j = ∞, and the groups are placed periodically. The same loading condition and the same geometry are assumed for cracks in all groups. A singular integral equation is used to solve the problems. The singular integral equation is formulated on cracks of the 0th group (or the central group) with the collection of influences from the infinite groups. The influences of many neighboring groups to the central group are evaluated exactly. Meantime, the influences of many remote groups to the central group can be summed up into one term approximately. The stress intensity factors at crack tips can be evaluated from the solution of the singular integral equation. It is found from some sample problems that the obtained results are very accurate. Finally, several numerical examples are presented and interaction among the group cracks is addressed.  相似文献   

18.
The hydrodynamics of vertical falling films in a large-scale pilot unit are investigated experimentally and numerically. We study a broad range of operating conditions with Kapitza and Reynolds numbers ranging from Ka = 191–3394 and Re 24–251, respectively. We compare film thickness measurements, conducted by a laser triangulation scanner, with those obtained by directly solving the full Navier–Stokes equations in two dimensions and using the volume of fluid (VOF) numerical framework. We examine the evolution of the liquid film at multiple locations over a vertical distance of 4.5 m. In both our experiments and simulations we identify a natural wave frequency of the system of approximately 10 Hz. We investigate the formulation of the inlet boundary condition and its effects on wave formation. We show how potentially erroneous conclusions can be made if the simulated domain is shorter than 1000 film thicknesses, by mistaking the forced inlet frequency for the natural wave frequency. We recommend an inlet disturbance consisting of a multitude of frequencies to achieve the natural wave frequency over relatively short streamwise distances.  相似文献   

19.
The heat transfer and the pressure drop characteristics of laminar flow of viscous oil (195 < Pr < 525) through rectangular and square ducts with internal transverse rib turbulators on two opposite surfaces of the ducts and with wire coil inserts have been studied experimentally. Circular duct has also been used. The transverse ribs in combination with wire coil inserts have been found to perform better than either ribs or wire coil inserts acting alone. The heat transfer and the pressure drop measurements have been taken in separate test sections. Heat transfer tests were carried out in electrically heated stainless steel ducts incorporating uniform wall heat flux boundary conditions. Pressure drop tests were carried out in acrylic ducts. The flow friction and thermal characteristics are governed by duct aspect ratio, coil helix angle and wire diameter of the coil, rib height and rib spacing, Reynolds number and Prandtl number. Correlations developed for friction factor and Nusselt number have predicted the experimental data satisfactorily. The performance of the geometry under investigation has been evaluated. It has been found that on the basis of constant pumping power, up to fifty per cent heat duty increase occurs for the combined ribs and wire coil inserts case compared to the individual ribs and wire coil inserts cases in the measured experimental parameters space. On the constant heat duty basis, the pumping power has been reduced up to forty per cent for the combined enhancement geometry than the individual enhancement geometries.  相似文献   

20.
Delineation of mini- and micro-scale channels with respect to two-phase flow has been the subject of many research papers. There is no consensus on when the small channel can be characterized as a mini-channel or micro-channel. The idea proposed by this paper is to use the normalized bubble nose radius, liquid film thickness top over bottom ratio, and bubble shape contour, which are found under normal gravity conditions in slug flow through a horizontal adiabatic channel, as the delineation criteria. The input parameters are bubble nose radius and bubble nose velocity as the characteristic length scale and characteristic velocity scale respectively. 3D numerical simulation with ANSYS FLUENT was used to obtain the necessary data. Following CFD practice, a mesh independence study and a numerical model validation against published experimental data were both conducted. Analysis of the numerical simulation results showed that channels with D  100 μm can be characterized as a micro-system, while channels with D  400 μm belong to mini-systems. The region 200 μm  D  300 μm represents a transition from the micro-scale to mini-scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号