首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文采用有限元方法系统地研究了复杂载荷下双金属复合管的屈曲失效,三维有限元数值模型考虑了双金属复合管的准静态复合成型制造过程中产生的残余应力,分析了外基管直径、内衬管壁厚、内外管初始间隙、内衬管屈服强度、内压等因素对双金属复合管屈曲失效的影响。结果表明,加载路径、复合管的几何尺寸及内衬管的屈服强度对双金属复合管的屈曲性能均有较大影响,内充压力可以延迟内衬管的屈曲失效。  相似文献   

2.
采用有限元方法研究了力-热载荷下双金属复合管的屈曲失效行为,通过三维有限元建模考虑了双金属复合管的准静态复合成型制造过程中产生的残余应力,分析了温度及内压两个主要参数对双金属复合管屈曲失效的影响。结果表明,高温导致材料发生软化,抑制了双金属复合管的屈曲;弯矩、内压及热载荷联合作用下,复合管内介质温度降低,复合管弯矩达到最大值对应的曲率减小,而弯曲承载能力增大,外基管的椭圆率也增大;内压变化对复合管的弯曲承载能力和外基管的椭圆率影响较小。  相似文献   

3.
An analytical bifurcation solution is presented for axisymmetric wrinkling on a lined pipe under axial compression without internal pressure. The internal liner consists of corrosion-resistant alloy (CRA), it is not metallurgically bonded to the carbon steel backing pipe, and it is assumed to be in a snug fit condition: i.e. there is no gap between the liner and the backing pipe, but also no prestress that would lead to a positive contact or gripping pressure between the liner and the backing. The backing is assumed to be much thicker than the liner, so that wrinkling-related deformations of the backing pipe can be neglected.The solution indicates that the incipient wrinkling strain for the snug-fit pipe without any imperfections is the same as the incipient wrinkling strain for a single pipe with (5/3) times the wall thickness of the liner, and the same midsurface diameter, as determined by the solution of Batterman (1965) for the case of small strains, or Peek (2000a) for the case of finite strains. For the case when the liner-pipe friction is included the factor (5/3) increases slightly.A positive contact pressure due to prestress or internal pressure raises the wrinkling strain, whereas imperfections (e.g. at seam or girth welds) reduces it. The snug-fit solution accounts for neither, but nevertheless provides a useful reference wrinkling strain, and can be used to validate numerical solutions, and it gives a bifurcation modeshape and wrinkle length that can be used in numerical models to investigate post-bifurcation behaviour.  相似文献   

4.
The problem of a tube under pure bending is first solved as a generalised plane strain problem. This then provides the prebifurcation solution, which is uniform along the length of the tube. The onset of wrinkling is then predicted by introducing buckling modes involving a sinusoidal variation of the displacements along the length of the tube. Both the prebuckling analysis and the bifurcation check require only a two-dimensional finite element discretisation of the cross-section with special elements. The formulation does not rely on any of the approximations of a shell theory, or small strains. The same elements can be used for pure bending and local buckling a prismatic beam of arbitrary cross-section. Here the flow theory of plasticity with isotropic hardening is used for the prebuckling solution, but the bifurcation check is based on the incremental moduli of a finite strain deformation theory of plasticity.For tubes under pure bending, the results for limit point collapse (due to ovalisation) and bifurcation buckling (wrinkling) are compared to existing analysis and test results, to see whether removing the approximations of a shell theory and small strains (used in the existing analyses) leads to a better prediction of the experimental results. The small strain analysis results depend on whether the true or nominal stress–strain curve is used. By comparing small and finite strain analysis results it is found that the small strain approximation is good if one uses (a) the nominal stress–strain curve in compression to predict bifurcation buckling (wrinkling), and (b) the true stress–strain curve to calculate the limit point collapse curvature.In regard to the shell theory approximations, it is found that the three-dimensional continuum theory predicts slightly shorter critical wrinkling wavelengths, especially for lower diameter-to-wall-thickness (D/t) ratios. However this difference is not sufficient to account for the significantly lower wavelengths observed in the tests.  相似文献   

5.
Lining internally a carbon steel pipe with a thin layer of corrosion resistant material is an economical method for protecting offshore tubulars from the corrosive ingredients of hydrocarbons. In applications involving severe plastic bending, such as in the reeling installation process, the liner can detach from the outer pipe and develop large amplitude buckles that compromise the flow. This paper outlines a numerical framework for establishing the extent to which lined pipe can be bent before liner collapse. The modeling starts with the simulation of the inflation process through which the two tubes develop interference contact pressure. Bending the composite structure leads to differential ovalization and eventually separation of part of the liner from the outer pipe. The unsupported strip of the liner on the compressed side first wrinkles and at higher curvature buckles and collapses in a diamond shaped mode. The sensitivity of the collapse curvature to the various parameters of the problem is studied, and amongst other findings the onset of collapse is shown to be very sensitive to small geometric imperfections in the liner. It is also demonstrated that bending the pipe under modest amounts of internal pressure can delay liner collapse to curvatures that make it reelable.  相似文献   

6.
The present paper investigates buckling of cylindrical shells of transversely-isotropic elastic material subjected to bending, considering the nonlinear prebuckling ovalized configuration. A large-strain hypoelastic model is developed to simulate the anisotropic material behavior. The model is incorporated in a finite-element formulation that uses a special-purpose “tube element”. For comparison purposes, a hyperelastic model is also employed. Using an eigenvalue analysis, bifurcation on the prebuckling ovalization path to a uniform wrinkling state is detected. Subsequently, the postbuckling equilibrium path is traced through a continuation arc-length algorithm. The effects of anisotropy on the bifurcation moment, the corresponding curvature and the critical wavelength are examined, for a wide range of radius-to-thickness ratio values. The calculated values of bifurcation moment and curvature are also compared with analytical predictions, based on a heuristic argument. Finally, numerical results for the imperfection sensitivity of bent cylinders are obtained, which show good comparison with previously reported asymptotic expressions.  相似文献   

7.
This paper presents a theoretical analysis for the long-term non-linear elastic in-plane behaviour and buckling of shallow concrete-filled steel tubular (CFST) arches. It is known that an elastic shallow arch does not buckle under a load that is lower than the critical loads for its bifurcation or limit point buckling because its buckling equilibrium configuration cannot be achieved, and the arch is in a stable equilibrium state although its structural response may be quite non-linear under the load. However, for a CFST arch under a sustained load, the visco-elastic effects of creep and shrinkage of the concrete core produce significant long-term increases in the deformations and bending moments and subsequently lead to a time-dependent change of its equilibrium configuration. Accordingly, the bifurcation point and limit point of the time-dependent equilibrium path and the corresponding buckling loads of CFST arches also change with time. When the changing time-dependent bifurcation or limit point buckling load of a CFST arch becomes equal to the sustained load, the arch may buckle in a bifurcation mode or in a limit point mode in the time domain. A virtual work method is used in the paper to investigate bifurcation and limit point buckling of shallow circular CFST arches that are subjected to a sustained uniform radial load. The algebraically tractable age-adjusted effective modulus method is used to model the time-dependent behaviour of the concrete core, based on which solutions for the prebuckling structural life time corresponding to non-linear bifurcation and limit point buckling are derived.  相似文献   

8.
This paper elucidates the interactive buckling behaviors of an inflated envelope under coupled mechani-cal and thermal loads, especially the longitudinal wrinkling bifurcation and hoop ovalization buckling. The longitudi-nal bending buckling process of the inflated envelope can be divided into three continuous stages, which are global buckling, interactive global-local buckling, and kink. A vari-ety of hoop ovalization buckling modes are observed under coupled mechanical-thermal load. Unlike the mechanical case, thermal load leads to a hoop negative ovalization buck-ling. In addition, it can accelerate the longitudinal coupled bifurcation and resist the hoop coupled ovalization buckling. Moreover, the bending resistance of the inflated envelope will be improved when the length of the structure is increased, resulting in the difficulty of it to become wrinkled. These results provide a new insight into the buckling behaviors of an inflated envelope under coupled external loads, and give a reference for the design of the inflated envelope.  相似文献   

9.
The present paper examines instabilities of long thin elastic tubes. Both initially straight and initially bent tubes are analyzed under in-plane bending. Tube response, a combination of ovalization instability and bifurcation instability (buckling), is investigated using a nonlinear finite element (FE) technique, which employs polynomial functions in the longitudinal tube direction and trigonometric functions to describe cross-sectional deformation. It is demonstrated that the interaction between the two instability modes depends on the value and the sign of the initial tube curvature. The ovalization of initially bent tubes is examined in detail and, in particular, the case of opening moments. Furthermore, the paper emphasizes on bifurcation instability. It is shown that buckling may occur prior to or beyond the ovalization limit point, depending on the value of the initial curvature. Using the nonlinear FE formulation, the location of bifurcation on the primary path is detected, post-buckling equilibrium paths are traced, and the corresponding wavelengths of the buckled configurations are calculated. Moreover, results over a wide range of initial curvature values are presented, extending the findings of previous works. Finally, several analytical approaches, introduced in previous research works, are also employed to estimate the moments causing ovalization and bifurcation instability. These approaches are based on nonlinear flexible shell theory or simplified ring analysis. The efficiency and accuracy of those analytical methods with respect to the nonlinear FE formulation are examined.  相似文献   

10.
In this study, the post-divergence behavior of fluid-conveying pipes supported at both ends is investigated using the nonlinear equations of motion. The governing equation exhibits a cubic nonlinearity arising from mid-plane stretching. Exact solutions for post-buckling configurations of pipes with fixed–fixed, fixed–hinged, and hinged–hinged boundary conditions are investigated. The pipe is stable at its original static equilibrium position until the flow velocity becomes high enough to cause a supercritical pitchfork bifurcation, and the pipe loses stability by static divergence. In the supercritical fluid velocity regime, the equilibrium configuration becomes unstable and bifurcates into multiple equilibrium positions. To investigate the vibrations that occur in the vicinity of a buckled equilibrium position, the pseudo-nonlinear vibration problem around the first buckled configuration is solved precisely using a new solution procedure. By solving the resulting eigenvalue problem, the natural frequencies and the associated mode shapes of the pipe are calculated. The dynamic stability of the post-buckling configurations obtained in this manner is investigated. The first buckled shape is a stable equilibrium position for all boundary conditions. The buckled configurations beyond the first buckling mode are unstable equilibrium positions. The natural frequencies of the lowest vibration modes around each of the first two buckled configurations are presented. Effects of the system parameters on pipe behavior as well as the possibility of a subcritical pitchfork bifurcation are also investigated. The results show that many internal resonances might be activated among the vibration modes around the same or different buckled configurations.  相似文献   

11.
An elastic double-shell model is presented for the buckling and postbuckling of a double-walled carbon nanotube subjected to axial compression. The analysis is based on a continuum mechanics model in which each tube of a double-walled carbon nanotube is described as an individual elastic shell and the interlayer friction is negligible between the inner and outer tubes. The governing equations are based on the Karman–Donnell-type nonlinear differential equations. The van der Waals interaction between the inner and outer nanotubes and the nonlinear prebuckling deformations of the shell are both taken into account. A boundary layer theory of shell buckling is extended to the case of double-walled carbon nanotubes under axial compression. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. Numerical results reveal that the single-walled carbon nanotube and the double-walled carbon nanotube both have an unstable postbuckling behavior.  相似文献   

12.
The paper describes the processes of elastic deformation of thin films under mechanical loading. The film is modeled longitudinally by a compressed plate arranged on an elastic foundation. A computer model of the buckling of the narrow thin plate with a delamination portion located on an elastic foundation is constructed. This paper also touches upon the supercritical behavior of the plate–substrate system. The experiments on the axial compression of a metal strip adhered to a rubber plate are performed, and 2 to 7 buckling modes are obtained therein. The critical loads and buckling modes obtained in the numerical calculations are compared with the experimental data. It is shown that there is the possibility of progressive delamination of the metal plate from the foundation if the critical load is exceeded. It is found that the use of the proposed approach, which, in contrast to other approaches, accounts for the elastic deformation of the substrate, causes the dependence between the critical bending stress and the stiffness of the foundation.  相似文献   

13.
The elastic buckling behavior of rectangular perforated plates was studied by using the finite element method in this study. Circular cutout was chosen at different locations along the principal x-axis of plates subjected to linearly varying loading in order to evaluate the effect of cutout location on the buckling behavior of plates. The results show that the center of a circular hole should not be placed at the end half of the outer panel for all loading patterns. Furthermore, the presence of a circular hole always causes a decrease in the elastic buckling load of plates subjected to bending, even if the circular hole is not in the outer panel.  相似文献   

14.
Relatively thin-walled tubes bent into the plastic range buckle by axial wrinkling. The wrinkles initially grow stably but eventually localize and cause catastrophic failure in the form of sharp local kinking. The onset of axial wrinkling was previously established by bifurcation analyses that use instantaneous deformation theory moduli. The curvatures at bifurcation were predicted accurately, but the wrinkle wavelengths were consistently longer than measured values. The subject is revisited with the aim of resolving this discrepancy. A set of new bending experiments is conducted on aluminum alloy tubes. The results are shown to be in line with previous ones. However, the tubes used were found to exhibit plastic anisotropy, which was measured and characterized through Hill’s quadratic anisotropic yield function. The anisotropy was incorporated in the flow theory used for prebuckling and postbuckling calculations as well as in the deformation theory used for bifurcation checks. With the anisotropy accounted for, calculated tube responses are found to be in excellent agreement with the measured ones while the predicted bifurcation curvatures and wrinkle wavelengths fall in line with the measurements also. The postbuckling response is established using a finite element model of a tube assigned an initial axisymmetric imperfection with the calculated wavelength. The response develops a limit moment that is followed by a sharp kink that grows while the overall moment drops. The curvature at the limit moment agrees well with the experimental onset of failure. From parametric studies of the various instabilities it is concluded that, for optimum predictions, anisotropy must be incorporated in both bifurcation buckling as well as in postbuckling calculations.  相似文献   

15.
Line pipes have anisotropic mechanical properties, such as tensile strength, ductility and toughness. These properties depend on both prestrain during the cold forming process and on the anisotropy of the mother plates. In this study, a phenomenological model combining isotropic and kinematic hardening is developed to represent anisotropic hardening behavior of high strength steel line pipes. The model is adjusted on experiments carried out on smooth and notched axisymmetric bars and plane strain specimens. The model is used to simulate bending tests carried out on large pipes containing a geometric imperfection. Numerical results suggest that prestraining in pipe forming process significantly affects the bending capacity of pipes.  相似文献   

16.
IntroductionItiswell_knownthatsimplysupportedpipesconveyingfluidarenamedasgyroscopiccon servativesystembecauseitsenergyattheexitisequaltothatattheenter[1].Thissystemwasstudiedbysomescholarsathomeandabroad .Paidoussis[2 ]studiedtheproblemofdynamicsandstabi…  相似文献   

17.
Summary The influence of shear deformation on the buckling behavior of a beam supported laterally by a Winkler elastic foundation is studied. A full investigation of the bifurcation points at which, under axial load, the beam becomes critical with respect to one or two simultaneous buckling modes is made. The configurations and stabilities of the equilibrium paths that bifurcate from the critical points are derived. From the results of theoretical analysis, it becomes evident that shear deformation has a considerable effect upon the equilibriums and stabilities of the post-buckling of the beam. The results for the Bernoulli-Euler beam can be obtained as a limiting case for those of the present beam by letting the shear stiffness tend to infinity.Supported by the National Natural Science Foundation of China  相似文献   

18.
In the recent codes for the design of steel structures, the elastic–plastic methods of analysis are recognised to provide an efficient estimation of the ultimate resistance of some of these structures. These methods are usually based on some basic hypotheses, such as the creation of plastic hinges in the most stressed cross-sections, for instance.As the development of these plastic hinges depends on the interaction between the internal forces and on the cross-section shape, specific equations are required for the analysis of different types of cross-sections. However, most frequently, these equations are not available, or they are expressed by means of simplified expressions; this is usually the case when biaxial bending is involved.This paper presents new interaction criteria for the analysis of steel rectangular hollow sections subjected to an axial force and biaxial bending moments, at the elastic or the plastic limit states (as long as buckling phenomena are not involved). The plastic interaction criteria are presented, in a first step, for some particular combinations of the internal forces, such as axial loading with bending about a main axis, and biaxial bending without axial loading. Then, the global solution for the simultaneous combination of an axial force and bending moments about both the main axes of inertia are described in detail. All these plastic interaction criteria are compared with the corresponding plastic criteria adopted in the Eurocode 3 (EC3). Some suggestions are presented in order to improve the results given by these EC3 criteria.  相似文献   

19.
The effects of elastic anisotropy in piping materials on fluid–structure interaction are studied for water-filled carbon-fiber reinforced thin plastic pipes. When an impact is introduced to water in a pipe, there are two waves traveling at different speeds. A primary wave corresponding to a breathing mode of pipe travels slowly and a precursor wave corresponding to a longitudinal mode of pipe travels fast. An anisotropic stress–strain relationship of piping materials has been taken into account to describe the propagation of primary and precursor waves in the carbon-fiber reinforced thin plastic pipes. The wave speeds and strains in the axial and hoop directions are calculated as a function of carbon-fiber winding angles and compared with the experimental data. As the winding angle increases, the primary wave speed increases due to the increased stiffness in the hoop direction, while the precursor wave speed decreases. The magnitudes of precursor waves are much smaller than those of primary waves so that the effect of precursor waves on the deformation of pipe is not significant. The primary wave generates the hoop strain accompanying the opposite-signed axial strain through the coupling compliance of pipe. The magnitude of hoop strain induced by the primary waves decreases with increasing the winding angle due to the increased hoop stiffness of pipe. The magnitude of axial strain is small at low and high winding angles where the coupling compliance is small.  相似文献   

20.
The wrinkling of a stiff thin film bonded on a soft elastic layer and subjected to an applied or residual compressive stress is investigated in the present paper. A three-dimensional theoretical model is presented to predict the buckling and postbuckling behavior of the film. We obtained the analytical solutions for the critical buckling condition and the postbuckling morphology of the film. The effects of the thicknesses and elastic properties of the film and the soft layer on the characteristic wrinkling wavelength are examined. It is found that the critical wrinkling condition of the thin film is sensitive to the compressibility and thickness of the soft layer, and its wrinkling amplitude depends on the magnitude of the applied or residual in-plane stress. The bonding condition between the soft layer and the rigid substrate has a considerable influence on the buckling of the thin film, and the relative sliding at the interface tends to destabilize the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号