首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 876 毫秒
1.
Quantum coherent physics and chemistry concern the creation and manipulation of an excited-state manifold that contains the superposition and entanglement of multiple quantum levels. Electromagnetic waves such as light and microwave can be used to generate and probe different quantum coherent phenomena. The recent advances in scanning tunneling microscopy (STM) techniques including ultrafast laser coupled STM and electron spin resonance STM combine electromagnetic excitation with tunneling electron detection, bringing the investigation of quantum coherence down to the atomic and molecular level. Here, we survey the latest STM studies of different quantum coherent phenomena covering molecular vibration, electron transfer, surface plasmon resonance, phonon, spin oscillation, and electronic transition, and discuss the state and promise of characterizing and manipulating quantum coherence at the atomic or molecular scale.  相似文献   

2.
Inelastic electron tunneling spectroscopy (IETS) combined with scanning tunneling microscopy (STM) allows the acquisition of vibrational signals at surfaces. In STM-IETS, a tunneling electron may excite a vibration, and opens an inelastic channel in parallel with the elastic one, giving rise to a change in conductivity of the STM junction. Until recently, the application of STM-IETS was limited to the localized vibrations of single atoms and molecules adsorbed on surfaces. The theory of the STM-IETS spectrum in such cases has been established. For the collective lattice dynamics, i.e., phonons, however, features of STM-IETS spectrum have not been understood well, though in principle STM-IETS should also be capable of detecting phonons. In this review, we present STM-IETS investigations for surface and interface phonons and provide a theoretical analysis. We take surface phonons on Cu(1?1?0) and interfacial phonons relevant to graphene on SiC substrate as illustrative examples. In the former, we provide a theoretical formalism about the inelastic phonon excitations by tunneling electrons based on the nonequilibrium Green’s function (NEGF) technique applied to a model Hamiltonian constructed in momentum space for both electrons and phonons. In the latter case, we discuss the experimentally observed spatial dependence of the STM-IETS spectrum and link it to local excitations of interfacial phonons based on ab-initio STM-IETS simulation.  相似文献   

3.
The electronic excitations induced with tunneling electrons into adlayers of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on Ag(111) have been investigated by in situ fluorescence spectroscopy in scanning tunneling microscopy (STM). A minute area of the surface is excited by an electron tunneling process in STM. Fluorescence spectra strongly depend on the coverage of PTCDA on Ag(111). The adsorption of the first PTCDA layer quenches the intrinsic surface plasmon originated from the clean Ag(111). When the second layer is formed, fluorescence spectra are dominated by the signals from PTCDA, which are interpreted as the radiative decay from the manifold of first singlet excited state (S(1)) of adsorbed PTCDA. The fluorescence of PTCDA is independent of the bias polarity. In addition, the fluorescence excitation spectrum agrees with that by optical excitation. Both results indicate that S(1) is directly excited by the inelastic impact scattering of electrons tunneling within the PTCDA adlayer.  相似文献   

4.
A single propene molecule, located in the junction between the tip of a scanning tunneling microscope (STM) and a Cu(211) surface can be dehydrogenated by inelastic electron tunneling. This reaction requires excitation of the asymmetric C-H stretching vibration of the ═CH(2) group. The product is then identified by inelastic electron tunneling action spectroscopy (IETAS).  相似文献   

5.
The use of scanning tunneling microscopy (STM) for atomic scale characterization of clean and adsorbate covered (single-crystalline) metal surfaces is discussed. Topographic images reveal details on their periodic structure and on the atomic arrangement in the surface layer, and in particular on surface defects. The observation and characterization of individual adsorbate species gives access to the local electronic structure of the adsorption complex and to details of the chemical bond between substrate and adsorbate. Atomic resolution imaging opens new perspectives for the investigation of various surface processes such as surface diffusion, thin film growth or surface reactions.  相似文献   

6.
Scanning tunneling microscopy (STM) manipulation has received wide attention in the surface science community since the pioneering work of Eigler to construct surface nanostructures in an atom by atom fashion. Lots of scientists have been inspired and devoted to study the surface issues with the help of STM manipulations and great achievements have been obtained. In this Minireview, we mainly describe the recent progress in applying STM manipulations to regulate the inter‐adsorbate and adsorbate–substrate interactions on solid surfaces. It was shown that this technique could not only differentiate intermolecular interactions but also construct molecular nanostructures by regulating different kinds of inter‐adsorbate interactions or adsorbate–substrate interactions.  相似文献   

7.
Triangular zigzag nanographenes, such as triangulene and its π‐extended homologues, have received widespread attention as organic nanomagnets for molecular spintronics, and may serve as building blocks for high‐spin networks with long‐range magnetic order, which are of immense fundamental and technological relevance. As a first step towards these lines, we present the on‐surface synthesis and a proof‐of‐principle experimental study of magnetism in covalently bonded triangulene dimers. On‐surface reactions of rationally designed precursor molecules on Au(111) lead to the selective formation of triangulene dimers in which the triangulene units are either directly connected through their minority sublattice atoms, or are separated via a 1,4‐phenylene spacer. The chemical structures of the dimers have been characterized by bond‐resolved scanning tunneling microscopy. Scanning tunneling spectroscopy and inelastic electron tunneling spectroscopy measurements reveal collective singlet–triplet spin excitations in the dimers, demonstrating efficient intertriangulene magnetic coupling.  相似文献   

8.
It has been observed in scanning tunneling microscopy (STM) that the adsorption of molecules on the (001) surface of a Group IV semiconductor can lead to an asymmetric ordering of the dimers immediately adjacent to the adsorbate. This so-called pinning may occur along the dimer row on only one, or both sides of the adsorbate. Here we present a straightforward methodology for predicting such pinning and illustrate this approach for several different adsorbate structures on the Si(001) surface. This approach extends earlier work by including the effects of coupling across the adsorbate as well as the nearest-neighbor interactions between the chemisorbed dimer and its adjacent dimers. The results are shown to be in excellent agreement with the room temperature experimental STM data. The examples also show how this approach can serve as a powerful tool for discriminating between alternative possible adsorbate structures on a dimerized semiconductor (001) surface, especially in cases of molecular adsorption where the STM measurements provide insufficient details of the underlying atomic structure.  相似文献   

9.
Triangular zigzag nanographenes, such as triangulene and its π-extended homologues, have received widespread attention as organic nanomagnets for molecular spintronics, and may serve as building blocks for high-spin networks with long-range magnetic order, which are of immense fundamental and technological relevance. As a first step towards these lines, we present the on-surface synthesis and a proof-of-principle experimental study of magnetism in covalently bonded triangulene dimers. On-surface reactions of rationally designed precursor molecules on Au(111) lead to the selective formation of triangulene dimers in which the triangulene units are either directly connected through their minority sublattice atoms, or are separated via a 1,4-phenylene spacer. The chemical structures of the dimers have been characterized by bond-resolved scanning tunneling microscopy. Scanning tunneling spectroscopy and inelastic electron tunneling spectroscopy measurements reveal collective singlet–triplet spin excitations in the dimers, demonstrating efficient intertriangulene magnetic coupling.  相似文献   

10.
We consider studies of the atomic and magnetic structure near surfaces by photoelectron diffraction and by the holographic inversion of both photoelectron diffraction data and diffraction data involving the emission of fluorescent x-rays. The current status of photoelectron diffraction studies of surfaces, interfaces, and other nanostructures is first briefly reviewed, and then several recent developments and proposals for future areas of application are discussed. The application of full-solid-angle diffraction data, together with simultaneous characterization by low energy electron diffraction and scanning tunneling microscopy, to the epitaxial growth of oxides and metals is considered. Several new avenues that are being opened up by third-generation synchrotron radiation sources are also discussed. These include site-resolved photoelectron diffraction from surface and interface atoms, the possibility of time-resolved measurements of surface reactions with chemical-state resolution, and circular dichroism in photoelectron angular distributions from both non-magnetic and magnetic systems. The addition of spin to the photoelectron diffraction measurement is also considered as a method for studying short-range magnetic order, including the measurement of surface magnetic phase transitions. This spin sensitivity can be achieved through either core-level multiplet splittings or circular-polarized excitation of spin-orbit-split levels. The direct imaging of short-range atomic structure by both photoelectron holography and two distinct types of x-ray holography involving fluorescent emission is also discussed. Both photoelectron and x-ray holography have demonstrated the ability to directly determine at least approximate atomic structures in three dimensions. Photoelectron holography with spin resolution may make it possible also to study short-range magnetic order in a holographic fashion. Although much more recent in its first experimental demonstrations, x-ray fluorescence holography should permit deriving more accurate atomic images for a variety of materials, including both surface and bulk regions.  相似文献   

11.
The ability to covalently attach organic molecules to semiconductor surfaces in a controllable and selective manner is currently receiving much attention due to the potential for creating hybrid silicon-organic molecular-electronic devices. Here we use scanning tunneling microscopy (STM) and density functional theory calculations to study the adsorption of a simple ketone [acetone; (CH(3))(2)CO] to the silicon (001) surface. We show both bias and time-dependent STM images and their agreement with total energy DFT calculations, simulated STM images, and published spectroscopic data. We investigate the stability of the resulting adsorbate structures with respect to temperature and applied STM tip bias and current. We demonstrate the ability to convert from the kinetically favored single-dimer alpha-H cleavage adsorbate structure to thermodynamically favored bridge-bonded adsorbate structures. This can be performed for the entire surface using a thermal anneal or, for individual molecules, using the highly confined electron beam of the STM tip. We propose the use of the carbonyl functional group to tether organic molecules to silicon may lead to increased stability of the adsorbates with respect to current-voltage characterization. This has important implications for the creation of robust single-molecule devices.  相似文献   

12.
A sulfur-containing single molecule magnet, [Mn12O12(O2CC6H4SCH3)16(H2O)4], was assembled from solution on a Au(111) surface affording both submonolayer and monolayer coverages. The adsorbate morphology and the degree of coverage were inspected by scanning tunneling microscopy (STM), while X-ray photoelectron spectroscopy (XPS) allowed the determination of the chemical nature of the adsorbate on a qualitative and quantitative basis. The properties of the adsorbates were found to be strongly dependent on the solvent used to dissolve the magnetic complex. In particular, systems prepared from tetrahydrofuran solutions gave arrays of isolated and partially ordered clusters on the gold substrate, while samples prepared from dichloromethane exhibited a homogeneous monolayer coverage of the whole Au(111) surface. These findings are relevant to the optimization of magnetic addressing of single molecule magnets on surfaces.  相似文献   

13.
Inert metal surfaces present more chances of hosting organic intact radicals than other substrates, but large amounts of delocalized electronic states favor charge transfer and thus spin quenching. Lowering the molecule–substrate interaction is a usual strategy to stabilize radicals on surfaces. In some works, thin insulating layers were introduced to provide a controllable degree of electronic decoupling. Recently, retinoid molecules adsorbed on gold have been manipulated with a scanning tunneling microscope (STM) to exhibit a localized spin, but calculations failed to find a radical derivative of the molecule on the surface. Now the formation of a neutral radical spatially localized in a tilted and lifted cyclic end of the molecule is presented. An allene moiety provokes a perpendicular tilt of the cyclic end relative to the rest of the conjugated chain, thus localizing the spin of the dehydrogenated allene in its lifted subpart. DFT calculations and STM manipulations give support to the proposed mechanism.  相似文献   

14.
A simple unequal-sphere packing (USP) model, based on pure geometrical principles, was applied to study the centered-rectangular iodine c(px radical3)R30 degrees adlayer on the Au(111) surface, well-known from surface X-ray structure (SXS), low energy electron diffraction (LEED), and scanning tunneling microscopy (STM) experiments. To reproduce the exact patterns observed in experiments, two selective conditions-minimum average adsorbate height and minimum adlayer roughness-were imposed. As a result, a series of adlayer patterns with c(px radical3)R30 degrees symmetry (2.3 < p < 3), with precise structural details, including atomic registry and identification of the p-bisector as the most likely trajectory for the iodine adatom movement during the so-called uniaxial compression phenomenon, were identified. In addition, using the same model, the difference between the iodine adlayer arranged in hexagonal and centered-rectangular c(px radical3)R30 degrees patterns, as in the case of Pt(111) and Au(111) surfaces, was investigated. Qualitative and quantitative comparison shows that iodine adatoms in these two arrangements differ significantly in atomic registry, distance from the substrate, and the adlayer corrugation. Our findings could be of special interest in the study of the nature of the iodine adatom bonding to different substrates (i.e., Au vs Pt).  相似文献   

15.
Inelastic electron tunneling spectroscopy (IETS) performed with the scanning tunneling microscope (STM) has been deemed as the ultimate tool for identifying chemicals at the atomic scale. However, direct IETS-based chemical analysis remains difficult due to the selection rules that await a definite understanding. We present IETS simulations of single formate and benzoate species adsorbed in the same upright bridge geometry on a (111)-cleaved Cu surface. In agreement with measurements on a related substrate, the simulated IET-spectra of formate/Cu(111) clearly resolve one intense C-H stretching mode whatever the tip position in the vicinity of the molecular fragment. At variance, benzoate/Cu(111) has no detectable IET signal. The dissimilar IETS responses of chemically related molecules--formate and benzoate adsorbates--permit us to unveil another factor that complements the selection rules, namely the degree of the vacuum extension of the tunneling active states perturbed by the vibrations. As a consequence, the lack of a topmost dangling bond orbital is entirely detrimental for STM-based inelastic spectroscopy but not for STM elastic imaging.  相似文献   

16.
《中国化学快报》2023,34(1):107813
Spin properties of organic molecules have attracted great interest for their potential applications in spintronic devices and quantum computing. Fe-tetraphenyl porphyrin (FeTPP) is of particular interest for its robust magnetic properties on metallic substrates. FeTPP is prepared in vacuum via on-surface synthesis. Molecular structure and spin-related transport properties are characterized by low-temperature scanning tunneling microscope and spectroscopy at 0.5 K. Density functional theory calculations are performed to understand molecular adsorption and spin distribution on Au(111). The molecular structure of FeTPP is distorted upon adsorption on the substrate. Spin excitations of FeTPP are observed on the Fe atom and high pyrrole groups in differential conductance spectra. The calculated spin density distribution indicates that the electron spin of FeTPP is mainly distributed on the Fe atom. The atomic transmission calculation indicates that electrons transport to substrate is mediated through Fe atom, when the tip is above the high pyrrole group.  相似文献   

17.
We have introduced a model of two indistinguishable quantum oscillators (IQO) and examined several processes of nuclear excitations in atomic transitions. These processes are: (i) nuclear excitation in an electron transition, (ii) radiationless transitions in muonic atoms, (iii) nuclear excitation in positron-electron annihilation, and (iv) inelastic photoelectric effect. Predictions of our IQO model for these processes are in very good agreement with the available experimental data.  相似文献   

18.
A scanning tunneling microscope (STM) was used to extract the images of single, isolated pyridine molecules adsorbed on Ag(110) and to record their vibrational spectrum at 13 K. On the STM image, the pyridine molecule appears as an elongated protrusion along the [001] direction on top of a silver atom, indicating that it is bonded through its nitrogen lone pair electrons. STM inelastic electron tunneling spectroscopy of the adsorbed pyridine revealed C-D and C-H stretch modes at 282 and 378 meV, respectively.  相似文献   

19.
20.
Chemisorption of hydrogen on Pd{111} is a relatively simple, yet important surface chemical process. By using low-temperature scanning tunneling microscopy, tip-induced motion of adsorbed atomic hydrogen at 4 K has been observed at low coverage. The motion has been ascribed to excitation of vibrational modes that decay into translational modes; vibrational spectroscopy via inelastic electron tunneling corroborates this assignment, and the barrier to hydrogen atom motion has been determined. At higher coverages, tip-induced motion of vacancies in the hydrogen overlayer is observed, and the associated barrier has also been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号