首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Deformation mappings are considered that correspond to the motions of lattice defects, elastic stretch and rotation of the lattice, and initial defect distributions. Intermediate (i.e., relaxed) configuration spaces associated with these deformation maps are identified and then classified from the differential-geometric point of view. A fundamental issue is the proper selection of coordinate systems and metric tensors in these configurations when such configurations are classified as anholonomic. The particular choice of a global, external Cartesian coordinate system and corresponding covariant identity tensor as a metric on an intermediate configuration space is shown to be a constitutive assumption often made regardless of the existence of geometrically necessary crystal defects associated with the anholonomicity (i.e., the non-Euclidean nature) of the space. Since the metric tensor on the anholonomic configuration emerges necessarily in the definitions of scalar products, certain transpose maps, tensorial symmetry operations, and Jacobian invariants, its selection should not be trivialized. Several alternative (i.e., non-Euclidean) representations proposed in the literature for the metric tensor on anholonomic spaces are critically examined.  相似文献   

2.
3.
4.
针对各向同性材料,基于一组相互正交的基张量,建立了一套有 效的相关运算方法. 基张量中的两个分别是归一化的二阶单位张量和偏应力张量,另一个则 使用应力的各向同性二阶张量值函数经过归一化构造所得,三者共主轴. 根据张量函数表示 定理,本构方程和返回映射算法中所涉及到的应力的二阶、四阶张量值函数及其逆都由这组 基所表示. 推演结果表明:这些张量之间的运算,表现为对应系数矩阵之间的简单 关系. 其中,四阶张量求逆归结为对应的3\times3系数矩阵求逆,它对二阶张量的变换 则表现为该矩阵对3times 1列阵的变换. 最后,对这些变换关系应用于返回映 射算法的迭代格式进行了相关讨论.  相似文献   

5.
针对各向同性材料,基于一组相互正交的基张量,建立了一套有效的相关运算方法.基张量中的两个分别是归一化的二阶单位张量和偏应力张量,另一个则使用应力的各向同性二阶张量值函数经过归一化构造所得,三者共主轴.根据张量函数表示定理,本构方程和返回映射算法中所涉及到的应力的二阶、四阶张量值函数及其逆都由这组基所表示.推演结果表明:这些张量之间的运算,表现为对应系数矩阵之间的简单关系.其中,四阶张量求逆归结为对应的3×3系数矩阵求逆,它对二阶张量的变换则表现为该矩阵对3×1列阵的变换.最后,对这些变换关系应用于返回映射算法的迭代格式进行了相关讨论.  相似文献   

6.
Material tensors pertaining to polycrystalline aggregates should manifest also the influence of crystallographic texture on the material properties in question. In this paper we make use of tensors which form bases of irreducible representations of the rotation group and prove a representation theorem by which a given material tensor of a weakly-textured polycrystal is expressed as a linear combination of an orthonormal set of irreducible basis tensors, with the components given explicitly in terms of texture coefficients and a set of undetermined material parameters. Once the irreducible basis tensors that appear in the formula are determined, the representation formula, which is valid for all texture and crystal symmetries, will delineate quantitatively the effect of crystallographic texture on the material tensor in question. We present an integral formula and an orthonormalization process which serve as the basis for a procedure to determine explicitly the irreducible basis tensors required in the representation formula. For applications we determine a set of irreducible basis tensors for the elasticity tensor and a set for fourth-order tensors that define constitutive equations in incompressible elasticity and Hill’s quadratic yield functions in plasticity. We show that orientation averaging of a tensor can be done easily if we have in hand a set of irreducible basis tensors for the decomposition of the tensor in question. As illustration we derive a formula, which is valid for all texture and crystal symmetries, for the elasticity tensor under the Voigt model.  相似文献   

7.
8.
Using orthogonal projections, we investigate distance of a given elasticity tensor to classes of elasticity tensors exhibiting particular material symmetries. These projections depend on the orientation of the elasticity tensor; hence the distance is obtained as the minimization of corresponding expressions with respect to the action of the orthogonal group. These expressions are stated in terms of the eigenvalues of both the given tensor and the projected one. The process of minimization is facilitated by the fact that, as we prove, the traces of the corresponding Voigt and dilatation tensors are invariant under these orthogonal projections. For isotropy, cubic symmetry and transverse isotropy, we formulate algorithms to find both the orientation and the eigenvalues of the elasticity tensor endowed with a particular symmetry and closest to the given elasticity tensor.   相似文献   

9.
The nonlinear elastic response of a class of materials for which the deformation is subject to an internal material constraint described in experiments by James F. Bell on the finite deformation of a variety of metals is investigated. The purely kinematical consequences of the Bell constraint are discussed, and restrictions on the full range of compatible deformations are presented in geometrical terms. Then various forms of the constitutive equation relating the stress and stretch tensors for an isotropic elastic Bell material are presented. Inequalities on the mechanical response functions are introduced. The importance of these in applications is demonstrated in several examples throughout the paper.This paper focuses on homogeneous deformations. In a simple illustration of the theory, a generalized form of Bell's empirical rule for uniaxial loading is derived, and some peculiarities in the response under all-around compressive loading are discussed. General formulae for universal relations possible in an isotropic elastic, Bell constrained material are presented. A simple method for the determination of the left stretch tensor for essentially plane problems is illustrated in the solution of the problem of pure shear of a materially uniform rectangular block. A general formula which includes the empirical rule found in pure shear experiments by Bell is derived as a special case. The whole apparatus is then applied in the solution of the general problem of a homogeneous simple shear superimposed on a uniform triaxial stretch; and the great variety of results possible in an isotropic, elastic Bell material is illustrated. The problem of the finite torsion and extension of a thin-walled cylindrical tube is investigated. The results are shown to be consistent with Bell's data for which the rigid body rotation is found to be quite small compared with the gross deformation of the tube. Several universal formulas relating various kinds of stress components to the deformation independently of the material response functions are derived, including a universal rule relating the axial force to the torque.Constitutive equations for hyperelastic Bell materials are derived. The empirical work function studied by Bell is introduced; and a new constitutive equation is derived, which we name Bell's law. On the basis of this law, we then derive exactly Bell's parabolic laws for uniaxial loading and for pure shear. Also, form Bell's law, a simple constitutive equation relating Bell's deviatoric stress tensor to his finite deviatoric strain tensor is obtained. We thereby derive Bell's invariant parabolic law relating the deviatoric stress intensity to the corresponding strain intensity; and, finally, Bell's fundamental law for the work function expressed in these terms is recovered. This rule is the foundation for all of Bell's own theoretical study of the isotropic materials cataloged in his finite strain experiments on metals, all consistent with the internal material constraint studied here.  相似文献   

10.
In this paper, the concept of hypo-elasticity is generalized to the micropolar continuum theory, and the general forms of the constitutive equations of the micropolar hypo-elastic materials are presented. A new co-rotational objective rate whose spin is the micropolar gyration tensor is introduced which describes the deformation of the material in view of an observer attached to the micro-structure. As special case, simplified versions of the proposed constitutive equations are given in which the same fourth-order elasticity tensors are used as in the micropolar linear elasticity. A 2-D finite element formulation for large elastic deformation of micropolar hypo-elastic media based on the simplified constitutive equations in conjunction with Jaumann and gyration rates is presented. As an example, buckling of a shallow arc is examined, and it is shown that an increase in the micropolar material parameters results in an increase in the buckling load of the arc. Also, it is shown that micropolar effects become important for deformations taking place at small scales.  相似文献   

11.
Following a framework of elastic degradation and damage previously proposed by the authors, an ‘extended’ formulation of orthotropic damage in initially isotropic materials, based on volumetric/deviatoric decomposition, is presented. The formulation is founded on the concept of energy equivalence and makes use of second-order symmetric tensor damage variables. It is characterized by fourth-order damage-effect tensors (relating nominal to effective stresses and strains) built from the underlying second-order damage tensors and decomposed in product-form in isotropic and anisotropic parts. The formulation is developed in two steps. First, secant relations are established. In the isotropic case, the model embeds a path parameter allowing to range between pure volumetric to pure deviatoric damage. With the two undamaged material constants this makes a total of three constant parameters plus an evolving scalar damage variable, giving rise to a four-parameter model with two varying isotropic material coefficients. In the anisotropic case, the model is still characterized by the same three material constants plus three evolving variables which are the principal values of a second-order damage tensor. This leads to a six-parameter restricted form of orthotropic damage. In the second step, damage evolution rules are formulated in terms of a pseudo-logarithmic rate of damage. This allows to define meaningful conjugate forces that constitute a feasible space in which loading functions and damage evolution rules can be defined. The present ‘extended’ formulation is closed by the derivation of the tangent stiffness.  相似文献   

12.
In this paper, we consider the probabilistic modeling of media exhibiting uncertainties on material symmetries. More specifically, we address both the construction of a stochastic model and the definition of a methodology allowing the numerical simulation (and consequently, the inverse experimental identification) of random elasticity tensors whose mean distance (in a sense to be defined) to a given class of material symmetry is specified. Following the eigensystem characterization of the material symmetries, the proposed approach relies on the probabilistic model derived in Mignolet and Soize (2008), allowing the variance of selected eigenvalues of the elasticity tensor to be partially prescribed. In this context, a new methodology (regarding in particular the parametrization of the model) is defined and illustrated in the case of transversely isotropic materials. The efficiency of the approach is demonstrated by computing the mean distance of the random elasticity tensor to a given material symmetry class, the distance and projection onto the space of transversely isotropic tensors being defined by considering the Riemmanian metric and the Euclidean projection, respectively. It is shown that the methodology allows the above distance to be (partially) reduced as the overall level of statistical fluctuations increases, no matter the initial distance of the mean model used in the simulations. A comparison between this approach and the initial nonparametric approach introduced in Soize (2008) is finally provided.  相似文献   

13.
In this paper some expressions for stresses conjugate to two-point deformation tensors are derived. These expressions are offered in both the component and basis-free forms. Although, the material time rate of a two-point deformation tensor is not an objective quantity, the stress tensor conjugate to it may be determined. The component-form expressions are obtained by using the notion of conjugacy together with the objectivity of the stress power. The component-form expressions are then extended to a unified basis-free form, using a theorem established for this purpose. The specific results are provided for all different cases of distinct and coalescent principal stretches in a three-dimensional inner product space.  相似文献   

14.
K. Adachi 《Rheologica Acta》1983,22(4):326-335
Integral equations for the relative deformation gradient tensors are solved to give analytical expressions which involve velocities and velocity gradients along streamlines. For some Protean coordinate systems, metric tensors are presented, and deformation gradients and strain histories are calculated. The results are tested for two types of flow: rotational shearing flow and extensional flow. They are found to give the existing exact relations for the Finger strain tensor.  相似文献   

15.
The present paper is concerned with the numerical modelling of the large elastic–plastic deformation behavior and localization prediction of ductile metals which are sensitive to hydrostatic stress and anisotropically damaged. The model is based on a generalized macroscopic theory within the framework of nonlinear continuum damage mechanics. The formulation relies on a multiplicative decomposition of the metric transformation tensor into elastic and damaged-plastic parts. Furthermore, undamaged configurations are introduced which are related to the damaged configurations via associated metric transformations which allow for the interpretation as damage tensors. Strain rates are shown to be additively decomposed into elastic, plastic and damage strain rate tensors. Moreover, based on the standard dissipative material approach the constitutive framework is completed by different stress tensors, a yield criterion and a separate damage condition as well as corresponding potential functions. The evolution laws for plastic and damage strain rates are discussed in some detail. Estimates of the stress and strain histories are obtained via an explicit integration procedure which employs an inelastic (damage-plastic) predictor followed by an elastic corrector step. Numerical simulations of the elastic–plastic deformation behavior of damaged solids demonstrate the efficiency of the formulation. A variety of large strain elastic–plastic-damage problems including severe localization is presented, and the influence of different model parameters on the deformation and localization prediction of ductile metals is discussed.  相似文献   

16.
The eigenvalues of the fourth-order constitutive tangent modulus and the corresponding acoustic tensors are analyzed. Explicit expressions of the eigenvalues are made for the nonsymmetric tangent modulus tensor, and in the case of the deviatoric associative rule for the symmetric part of the tangent modulus and its acoustic tensor. In this context, a rate independent infinitesimal elastoplastic model is considered. The expressions of the plastic hardening modulus are summarized for the different local stability criteria (loss of second order work positiveness, loss of ellipticity, and loss of strong ellipticity). The critical hardening modulus and orientation are discussed in detail in the case of loss of ellipticity and loss of strong ellipticity. This analysis is based on the geometric method and linear, isotropic elasticity and deviatoric associative flow rule. In particular, the critical orientation for the loss of strong ellipticity and the classical shear band localization are compared.  相似文献   

17.
The rari-constant theory of linear elasticity is based on the assumption that elasticity in solids is caused by only pair potentials with coaxial forces acting between atoms. The strain energy of each pair potential depends on the square of the strain between the atoms in the pair. This strain can be determined by taking the inner product of the strain tensor with a structural tensor that is the tensor product of a unit vector with itself. It is shown that the 15 independent constants in the rari-constant theory can be generated by a complete set of 15 structural tensors. It is also shown that the 6 additional independent constants in the multi-constant theory can be generated by taking the inner product of 6 of these structural tensors with the square of the strain tensor. A generalization of these results for nonlinear elasticity is discussed with reference to recent work which compares the structural and generalized structural tensor approaches to modeling fibrous tissues.  相似文献   

18.
The paper deals with elasto-plastic models for crystalline materials with defects, dislocations coupled with disclinations. The behaviour of the material is described with respect to an anholonomic configuration, endowed with a non-Riemannian geometric structure. The geometry of the material structure is generated by the plastic distortion, which is an incompatible second-order tensor, and by the so-called plastic connection which is metric compatible, with respect to the metric tensor associated with the plastic distortion. The free energy function is dependent on the second-order elastic deformation and on the state of defects. The tensorial measure of the defects is considered to be the Cartan torsion of the plastic connection and the disclination tensor. When we restrict to small elastic and plastic distortions, the measures of the incompatibility as well as the dislocation densities reduced to the classical ones in the linear elasticity. The constitutive equations for macroforces and the evolution equations for the plastic distortion and disclination tensor are provided to be compatible with the free energy imbalance principle.  相似文献   

19.
In this paper a finite deformation constitutive model for rigid plastic hardening materials based on the logarithmic strain tensor is introduced. The flow rule of this constitutive model relates the corotational rate of the logarithmic strain tensor to the difference of the deviatoric Cauchy stress and the back stress tensors. The evolution equation for the kinematic hardening of this model relates the corotational rate of the back stress tensor to the corotational rate of the logarithmic strain tensor. Using Jaumann, Green–Naghdi, Eulerian and logarithmic corotational rates in the proposed constitutive model, stress–strain responses and subsequent yield surfaces are determined for rigid plastic kinematic and isotropic hardening materials in the simple shear problem at finite deformations.  相似文献   

20.
A selection of kernel functions is given to be used in a new integral constitutive equation proposed by Piau whereby the deviatoric stress is calculated from the integral of the history of the past intrinsic rate of rotation and rate of deformation tensors through a representation theorem. Piau has demonstrated the objectivity of a frame moving with a given particle whose axis are directed along the eigenvectors of the rate of deformation tensor. The use of such a framework provides a new approach in the attempt to reduce the computational difficulties associated with conventional constitutive equations written in co-deformational or co-rotational reference frames.The shear and primary normal-stress material functions and the extensional (elongational) stress growth function are defined for the proposed integral constitutive equation. These material functions are used to calculate the kernel functions using steady state, stress relaxation and stress growth data of Attané in simple shear flow for monodisperse polystyrene solutions. The shear and extensional stress growth data of Meissner for a polyethylene melt are also used to show the flexibility of the rheological model.The material functions are first written in terms of five monotonically decreasing functions of the time lag between the past and the present time. Then kernel functions are chosen such that when substituted in the new integral constitutive equation they yield the functions used to describe the data. A further condition imposed on the normalized kernel functions is that they be decreasing functions of time lag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号