首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents a phenomenological constitutive model for describing response of solid-like viscoelastic polymers undergoing degradation. The model is expressed in terms of recoverable and irrecoverable time-dependent parts. We use a time-integral function with a nonlinear integrand for the recoverable part and another time-integral function is used for the irrecoverable part, which is associated with the degradation evolution in the materials. Here, the degradation is attributed to the secondary and tertiary creep stages. An ‘internal clock’ concept in viscoelastic materials is used to incorporate the accelerated failure in the materials at high stress levels. We ignore the effect of heat generation due to the dissipation of energy and possible healing in predicting the long-term and failure response of the polymeric materials. Experimental data on polymer composites reported by Drozdov (2011) were used to characterize the material parameters and validate the constitutive model. The model is shown capable of predicting response of the polymer composites under various loading histories: creep, relaxation, ramp loading with a constant rate, and cyclic loadings. We observed that the failure time and number of cycles to failure during cyclic loadings are correlated to the duration of loading and magnitude of the prescribed mechanical loads. A scalar degradation variable is also introduced in order to determine the severity of the degradation in the materials, which is useful to predict the lifetime of the structures subject to various loading histories during the structural design stage.  相似文献   

2.
3.
The response of a polymer (polytetrafluoroethylene) to quasi-static and dynamic loading is determined and modeled. The polytetrafluoroethylene is extremely ductile and highly nonlinear in elastic as well as plastic behaviors including elastic unloading. Constitutive model developed earlier by Khan, Huang and Liang (KHL) is extended to include the responses of polymeric materials. The strain rate hardening, creep, and relaxation behaviors of polytetrafluoroethylene were determined through extensive experimental study. Based on the observation that both viscoelastic and viscoplastic deformation of polytetrafluoroethylene are time dependent and nonlinear, a phenomenalogical viscoelasto–plastic constitutive model is presented by a series connection of a viscoelastic deformation module (represented by three elements standard solid spring dashpot model), and a viscoplastic deformation module represented by KHL model. The KHL module is affected only when the stress exceeds the initial yield stress. The comparison between the predictions from the extended model and experimental data for uniaxial static and dynamic compression, creep and relaxation demonstrate that the proposed constitutive model is able to represent the observed time dependent mechanical behavior of polytetrafluoroethylene polytetrafluoroethylene qualitatively and quantitatively.  相似文献   

4.
Summary A constitutive model is derived for the isothermal nonlinear viscoelastic response in polymers, which do not possess the separability property. The model is based on the concept of transient networks, and treats a polymer as a system of nonlinear elastic springs (adaptive links), which break and emerge due to micro-Brownian motion of chains. The breakage and reformation rates for adaptive links are assumed to depend on some strain energy density. The viscoelastic behavior is described by an integral constitutive equation, where the relaxation functions satisfy partial differential equations with coefficients depending on the strain history. Adjustable parameters of the model are found by fitting experimental data for a number of polymers in tension at strains up to 400 per cent. To validate the constitutive relations, we consider loading with different strain rates, determine adjustable parameters at one rate of strains, and compare prediction of the model with observations at another rate of strains. Fair agreement between experimental data and results of numerical simulation is demonstrated when the rates of strains differ by more than a decade. Received 1 July 1997; accepted for publication 7 October 1997  相似文献   

5.
王珺  杨帆  陈大鹏 《力学学报》2002,34(5):735-742
高聚物在电子和航空等领域得到广泛运用,由于高聚物的亲水性,常常发生由于湿热引起的结构失效甚至材料的断裂.近年来,有实验显示,高聚物中的湿热效应及其力学反响是相互影响的,同时,考虑到高聚物的黏弹性,发展新的包含湿热效应的黏弹性本构方程来描述该问题是必要的.本文基于不可逆热力学的基本原理,运用连续介质力学的方法,通过引入内变量表示高聚物的黏性效应,基于 Helmholtz自由能导出一种热、湿分和黏弹性力学性质三场耦合的本构关系和系统控制方程,对实际的分析应用有较强的指导意义.  相似文献   

6.
A phenomenological one-dimensional constitutive model, characterizing the complex and highly nonlinear finite thermo-mechanical behavior of viscoelastic polymers, is developed in this investigation. This simple differential form model is based on a combination of linear and nonlinear springs with dashpots, incorporating typical polymeric behavior such as shear thinning, thermal softening at higher temperatures and nonlinear dependence on deformation and loading rate. Another model, of integral form, namely the modified superposition principle (MSP), is also modified further and used to show the advantage of the newly developed model over MSP. The material parameters for both models are determined for Adiprene-L100, a polyurethane based rubber. The constants once determined are then utilized to predict the behavior under strain rate jump compression, multiple step stress relaxation loading experiment and free end torsion experiments. The new constitutive model shows very good agreement with the experimental data for Adiprene-L100 for the various finite loading paths considered here and provides a flexible framework for a three-dimensional generalization.  相似文献   

7.
In this paper we develop a model, within a general framework that has been developed to describe the response of dissipative systems, for the strain induced degradation of polymeric solids, due to scission. The theory can be generalized to include degradation due to ultraviolet radiation, oxygen diffusion etc., by incorporating an appropriate form for the rate of dissipation associated with these processes. We study the simple shear and pure bending of such degrading polymer beams.  相似文献   

8.
Biodegradable polymers find an increasing number of applications in different fields of engineering and medicine due to their environmental-friendly degradation. The process of degradation of biodegradable polymer constituents and the bonding quality between the constituents in composites can be identified by the analysis of the phononic band structure. The present article considers a layered composite, in which the matrix degradation is modeled by a multitude of layers with decreasing values of their mechanical properties. Bonding between the inclusion and the degrading matrix is taken into account by a linear elastic bonding model in the first case and by a viscoelastic model in the second case.  相似文献   

9.
A precise characterization of the articular disc of the temporomandibular joint (TMJ) is essential to study the masticatory biomechanics. The disc is responsible for the load distribution over the articular surface and for absorbing impacts during mastication. The main objective of this work is to characterize the mechanical behaviour of the articular disc under compression, the usual stress state during mastication. A quasi-linear viscoelastic (QLV) model, with a hyperelastic response for the elastic function, is proposed to describe the mechanical behaviour of the articular disc. The validity of that simplified model relies on the independence of their constants with the strain level and strain rate. The independence of the strain level was proved in a previous work. In this paper, different loading rates were tested to fully confirm the validity of the model in the physiological range of loads. Moreover, the strong non-linearity of the stress-strain relation made the exponential strain energy function the most suitable of the different models tried to represent the elastic response of the QLV model.  相似文献   

10.
Polymeric materials usually present some viscoelastic behavior. To improve the mechanical behavior of these materials, ceramics materials are often filled into the polymeric materials in form of fiber or particle. A micromechanical model was proposed to estimate the overall viscoelastic behavior for particulate polymer composites, especially for high volume concentration of filled particles. The method is based on Laplace transform technique and an elastic model including two-particle interaction. The effective creep compliance and the stress and strain relation at a constant loading rate are analyzed. The results show that the proposed method predicts a significant stiffer response than those based on Mori-Tanaka's method at high volume concentration of particles.  相似文献   

11.
The Cox–Merz rule and Laun’s rule are two empirical relations that allow the estimation of steady shear viscosity and first normal stress difference, respectively, using small amplitude oscillatory shear measurements. The validity of the Cox–Merz rule and Laun’s rule imply an agreement between the linear viscoelastic response measured in small amplitude oscillatory shear and the nonlinear response measured in steady shear flow measurements. We show that by using a lesser-known relationship also proposed by Cox and Merz, in conjunction with Laun’s rule, a relationship between the rate-dependent steady shear viscosity and the first normal stress difference can be deduced. The new empirical relation enables a priori estimation of the first normal stress difference using only the steady flow curve (i.e., viscosity vs shear rate data). Comparison of the estimated first normal stress difference with the measured values for six different polymer solutions and melts show that the empirical rule provides values that are in reasonable agreement with measurements over a wide range of shear rates, thus deepening the intriguing connection between linear and nonlinear viscoelastic response of entangled polymeric materials.  相似文献   

12.
Interest in instrumented indentation experiments as a means to estimate mechanical properties has grown rapidly in recent years. Although numerous nano/micro-indentation experimental studies on polymeric materials have been reported in the literature, a corresponding methodology for extracting material property information from the experimental data does not exist. This situation for polymeric materials exists primarily because baseline numerical analyses of sharp indentation using appropriate large deformation constitutive models for the nonlinear viscoelastic–plastic response of these materials appear not to have been previously reported in the literature. An existing, widely used theory for amorphous polymers (e.g. [Boyce, M., Parks, D., Argon, A.S., 1988. Large inelastic deformation of glassy polymers. Part 1: Rate dependent constitutive model. Mechanics of Materials 7, 15–33; Arruda, E.M., Boyce, M.C., 1993. Evolution of plastic anisotropy in amorphous polymers during finite straining. International Journal of Plasticity 9, 697–720]) has been recently found to lack sufficient richness to enable one to quantitatively reproduce the major features of the indentation load-versus-depth curves for some common amorphous polymers [Gearing, B.P., 2002. Constitutive equations and failure criteria for amorphous polymeric solids. Ph.D. thesis, Massachusetts Institute of Technology].This study develops a new continuum model for the viscoelastic–plastic deformation of amorphous polymeric solids. We have applied the constitutive model to capture salient features of the mechanical response of the amorphous polymeric solid poly(methyl methacrylate) (PMMA) at ambient temperature and stress states under which this material does not exhibit crazing. We have conducted compression-tension strain-controlled experiments, as well as stress-controlled compression-creep experiments, and these experiments are used to calibrate the material parameters in the constitutive model for PMMA.We have implemented our constitutive model in a finite-element computer program, and using this finite-element program we have simulated micro-indentation experiments on PMMA. We show that our constitutive model and finite element simulations reproduce the experimentally-measured indentation load-versus-depth response with reasonable accuracy.  相似文献   

13.
“Molecular rheology” is the missing link between the macromolecular structure of polymeric materials and their viscoelastic properties in the melt state. It complements the engineering or continuum mechanics aspects of rheology, which generally ignores the molecular details of the objects under study. The pioneering vision of the diffusion and relaxation processes of flexible macromolecular chains initiated by P.-G. de Gennes has lead to very effective and predictive models of viscoelasticity of polymer melts, which go far beyond academic interest.We present, in this paper, two very different examples of application of molecular rheology: molecular design of block copolymers corresponding to expected end-user properties (which are directly linked to linear viscoelastic properties) and formulation of blends of linear polymers in order to get strain-hardening effects in non-linear viscoelasticity usually obtained with long-chain branched (LCB) materials.  相似文献   

14.
Small deformation viscoelastic response has been investigated in a series of five elastomeric binders, both with and without nonreinforcing filler. The filled systems were found to be both nonlinear viscoelastic and thermorheologically complex. These behaviors suggest the existence of a secondary relaxation process. The origin of this secondary process was modeled as an interphase of polymer weakly adsorbed on the filler surface. Decomposition of timetemperature shift factors for filled vs unfilled properties showed that the mechanical response of this interphase followed Arrhenius behavior. Measured activation energies ranged from 24 to 76kJ/mole, depending on the cohesiveenergy density of the elastomeric binder. Finally, these activation energies were related to the strain amplitude dependent nonlinear factors for the polymeric systems which contained no polar groups in their backbone, suggesting that in these systems both the nonlinear and thermorheologically complex nature of the filled materials' viscoelastic response originate from relaxations within this interphase.  相似文献   

15.
Pertinent works associated with magnetic resonance imaging (MRI) and drug delivery are reviewed in this work to demonstrate the role of transport theory in porous media in advancing the progress in biomedical applications. Diffusion process is considered significant in many therapies such as delivering drugs to the brain. Progress in development of the diffusion equation using local volume-averaging technique and evaluation of the applications associated with the diffusion equation are analyzed. Tortuosity and porosity have a significant effect on the diffusion transport. Different relevant models of tortuosity are presented and mathematical modeling of drug release from biodegradable delivery systems are analyzed in this investigation. New models for the kinetics of drug release from porous biodegradable polymeric microspheres under bulk erosion and surface erosion of the polymer matrix are presented in this study. Diffusion of the dissolved drug, dissolution of the drug from the solid phase, and erosion of the polymer matrix are found to play a central role in controlling the overall drug release process. This study paves the road for the researchers in the area of MRI and drug delivery to develop comprehensive models based on porous media theory utilizing fewer assumptions as compared to other approaches.  相似文献   

16.
The biggest challenge in the treatment of arterial stenosis remains the issue of optimization of stent design. Despite continuous improvement in surgical techniques and use of intensive pharmacotherapy, the results of stent coronary interventions may be unsatisfactory, and long-term interaction of a metal implant with a blood vessel results in complications such as recurrent stenosis and thrombosis. Therefore, it is necessary to search for new materials and stent designs to obtain a stent capable of restoring flow in the vessel and disappearing after fulfilling its function. Such stent must also be compatible with the vessel wall to enable regeneration of new structure of endothelium and deeper artery layers damaged during implantation. Consequently, there is ongoing search for functional solutions with minimum effects of long-term implant-tissue interaction. In light of the above, the team investigated the possibility of using biodegradable polymers already mentioned in the literature as a construction material for vascular stent. The study used three polyhydroxyacids based on lactic acid and glycolic acid: poly(l-lactide), poly(lactide-co-glycolide) and poly(d,l-lactide-co-glycolide). The research focused on assessing changes in mechanical, thermomechanical, rheological, and fatigue properties during the process of hydrolytic degradation. The analysis also covered the rate of release of degradation products. The results of the conducted tests indicate the possibility of developing a vascular stent with biodegradable polymers.  相似文献   

17.
We numerically simulate the flow field of a dilute polymeric solution using a finitely extendable nonlinear elastic (FENE) dumbbell model. A third-order accurate finite element upwind scheme is used to discretize the convection term in the FENE dumbbell equations for the configuration tensor. The numerical scheme also avoids unphysical negative values for diagonal components of the configuration tensor. The FENE dumbbell equations are solved along with the momentum and continuity equations at small Reynolds numbers with an accuracy of second order in time. In this work we apply this numerical technique to the motion of a viscoelastic fluid in an eccentric rotating cylinder geometry. We obtain the velocity and the polymer contribution to the stress fields as a function of time, and also examine the steady solutions. A particular focus is the influence of coupling between changes in polymer conformation and changes in the flow that occurs as the polymer concentration is increased to a level where the polymer contribution to the zero-shear viscosity of the solution is equal to that of the solvent.This research was supported under grants from the National Science Foundation and the San Diego Supercomputer Center.  相似文献   

18.
Dynamic photoelasticity is a full field technique which has been used by various researchers as an aid to improve understanding of problems that involve stress wave propagation. Birefringent materials that exhibit sufficient sensitivity to loading for stress wave propagation studies are typically polymers. Glass, which is not nearly as viscoelastic as polymers does not exhibit enough sensitivity for easy measurements, thus it is unsuitable for most dynamic studies. The effect of loading rate on material properties is more pronounced in polymers, hence accurate measurement of these properties is essential in a dynamic photoelastic study. The problem associated with the determination of the dynamic material properties of a polymer is the determination of the exact location of the wavefront. Digital image analysis can be used to locate the wavefront with a great deal of accuracy. The results from the digital image analysis can then be used to determine dynamic material properties for the polymer.  相似文献   

19.
This study presents analyses of deformations in nonlinear viscoelastic beams that experience large displacements and rotations due to mechanical, thermal, and electrical stimuli. The studied beams are relatively thin so that the effect of the transverse shear deformation is neglected, and the stretch along the transverse axis of the beams is also ignored. It is assumed that the plane that is perpendicular to the longitudinal axis of the undeformed beam remains plane during the deformations. The nonlinear kinematics of the finite strain beam theory presented by Reissner [27] is adopted, and a nonlinear viscoelastic constitutive relation based on a quasi-linear viscoelastic (QLV) model is considered for the beams. Deformation in beams due to mechanical, thermal, and electric field inputs are incorporated through the use of time integral functions, by separating the time-dependent function and nonlinear measures of field variables. The nonlinear measures are formulated by including higher order terms of the field variables, i.e. strain, temperature, and electric field. Responses of beams under mechanical, thermal, and electrical stimuli are illustrated and the effects of nonlinear constitutive relations on the overall deformations of the beams are highlighted.  相似文献   

20.
A large range of biodegradable polymers has been used to produce implantable medical devices. Apart from biological compatibility, these devices shall be also functional compatible and perform adequate mechanical temporary support during the healing process. However, the mechanical behavior of biodegradable materials during its degradation, which is an important aspect of the design of these biodegradable devices, is still an unexplored subject. Based on the literature, the mechanical behavior of biodegradable polymers is strain rate dependent and exhibits hysteresis upon cyclic loading. On the other hand, ductility, toughness and strength of the material decay during hydrolytic degradation. In this work, it is considered a three-dimensional time-dependent model adapted from the one developed by Bergström and Boyce to simulate the performance of biodegradable structures undergoing large deformations incorporating the hydrolysis degradation. Since this model assumes that the mechanical behavior is divided into a time independent network and a non-linear time-dependent network, it enables to simulate the monotonic tests of a biodegradable structure loaded under different strain rates. The hysteresis effects during unloading–reloading cycles at different strain levels can be predicted by the model. A parametric study of the material model parameters evolution during the hydrolytic degradation was conducted to identify which parameters are more sensible to this degradation process. The investigated model could predict very well the experimental results of a blend of polylactic acid and polycaprolactone (PLA–PCL) in the full range of strains until rupture during hydrolytic degradation. From these results and analyses, a method is proposed to simulate the three-dimensional mechanical behavior during hydrolytic degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号