首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The uniaxial compressive responses of 3003 Al–Mn alloy upon strain rates ranging from 0.001/s to about 104/s with initial temperatures from 77 K to 800 K were investigated. Instron servohydraulic testing machine and enhanced split Hopkinson bar facilities have been employed in such uniaxial compressive loading tests. The maximum true strain up to 80% has been achieved. The following observations have been obtained from the experimental results: 1) 3003 Al–Mn alloy presents remarkable ductility and plasticity at low temperatures and high strain rates; 2) its plastic flow stress strongly depends on the applied temperatures and strain rates; 3) the temperature history during deformation strongly affects the microstructure evolution within the material. Finally, paralleled with the systematic experimental investigations, a physically-based model was developed based on the mechanism of dislocation kinetics. The model predictions are compared with the experimental results, and a good agreement has been observed.  相似文献   

2.
This paper constitutes the second part of our experimental study of the thermo-mechanical behavior of superelastic NiTi shape memory alloy cables. Part I introduced the fundamental, room temperature, tensile responses of two cable designs (7 × 7 right regular lay, and 1 × 27 alternating lay). In Part II, each cable behavior is studied further by breaking down the response into the contributions of its hierarchical subcomponents. Selected wire strands were extracted from the two cable constructions, and their quasi-static tension responses were measured using the same experimental setup of Part I. Consistent with the shallow wire helix angles in the 7 × 7 construction, the force–elongation responses of the core wire, 1 × 7 core strand and full 7 × 7 cable were similar on a normalized basis, with only a slight decrease in transformation force plateaus and slight increase in plateau strains in this specimen sequence. By contrast, each successive 1 × 27 component (1 × 6 core strand, 1 × 15 strand, and full cable) included an additional outer layer of wires with a larger number of wires, greater helix radius, and deeper helix angle, so the normalized axial load responses became significantly more compliant. Each specimen in the sequence also exhibited progressively larger strains at failure, reaching 40% strain in the full 1 × 27 cable.Stress-induced phase transformations involved localized strain/temperature and front propagation in all of the tested 7 × 7 components but none of the 1 × 27 components aside from the 1 × 27 core wire. Stereo digital image correlation measurements revealed finer features within a global transformation front of the 1 × 7 core strand than the 7 × 7 cable, consisting of an staggered pattern of individual wire fronts that moved in lock-step during elongation. Although the 1 × 27 multi-layer strands exhibited temperature/strain localizations in a distributed pattern during transformations, the localizations did not propagate and their cause was traced back to contact indentations (stress concentrations) arising from the cable’s fabrication. The normalized axial torque responses of the multi-layer 1 × 27 components during transformation were distinctly non-monotonic and complex, due to the alternating handedness of the layers. Force and torque contributions of individual wire layers were deduced by subtracting 1 × 27 component responses, which helped to clarify the transformation kinetics within each layer and explain the unusual force and torque undulations seen in the 1 × 27 cable response of Part I.  相似文献   

3.
An experimental study of the flow field in a two-dimensional wall jet has been conducted. All measurements were carried out using hot-wire anemometry. The experimental facility has a rectangular slot nozzle of high aspect ratio l/b = 100 (where l and b are the length and height slot, respectively). Mean velocities and Reynolds stresses were determined with three nozzle Reynolds numbers (Re = 1 × 104, 2 × 104 and 3 × 104) and four different inclination angles between the wall and the flow velocity at the nozzle (β = 0°, 10°, 20° and 30°). Results indicate that all wall jets are self-preserving in the developed region. Normal to the wall two regions can be identified: one similar to a plane free jet and the other similar to a boundary layer. Downstream the interaction between these two regions creates a mixed or third region. The logarithmic region increases with the distance from the nozzle and with the Reynolds number. For the inclined wall jet, the spreading rate expressed in terms of jet half-width or maximum velocity decay with respect to the streamwise distance, asymptotes to a linear law. The streamwise locations where the jet becomes self-similar are farther from the exit than in parallel wall jet. The slope of both half-width and maximum velocity decay in the developed region are affected by both wall jet inclination angle and nozzle exit Reynolds number.  相似文献   

4.
Cables (or wire ropes) made from NiTi shape memory alloy (SMA) wires are relatively new and unexplored structural elements that combine many of the advantages of conventional cables with the adaptive properties of SMAs (shape memory and superelasticity) and have a broad range of potential applications. In this two part series, an extensive set of uniaxial tension experiments was performed on two Nitinol cable constructions, a 7 × 7 right regular lay and a 1 × 27 alternating lay, to characterize their superelastic behavior in room temperature air. Details of the evolution of strain and temperature fields were captured by simultaneous stereo digital image correlation and infrared imaging, respectively. Here in Part I, the nearly isothermal, superelastic responses of the two cable designs are presented and compared. Overall, the 7 × 7 construction has a mechanical response similar to that of straight wires with propagating transformation fronts and distinct stress plateaus during stress-induced transformations. The 1 × 27 construction, however, exhibits a more compliant and stable mechanical response, trading a decreased force for additional elongation, and does not exhibit transformation fronts due to the deeper helix angles of the layers. In Part II that follows, selected subcomponents are dissected from the two cable’s hierarchical constructions to experimentally break down the cable’s responses.  相似文献   

5.
An experimental study in an open-ended vertical channel is carried out in order to describe the fluid dynamics and heat transfer of transient free convection inside a vertical rib-roughened channel asymmetrically heated at various uniform heat fluxes (650, 700, and 780 W/m2) corresponding to various modified Rayleigh numbers (3.65 × 106, 3.93 × 106 and 4.4 × 106). Two ribs are symmetrically located on each wall. The investigations focused more specifically on the influence of the ribs positions inside the channel and the modified Rayleigh number (Ra*) both in steady-state regime and during the transitional phase occurring just after the start of the heating on the flow structure and the heat transfer performance. The results showed the appearance of large-scale flow instabilities which will develop and propagate until the development of the pocket-like vortex (reversed flow). Also, the formation and breakup of recirculation eddies, vortex banishment, besides that a separation and shifting of the boundary layer from one wall to another are identified. The best position of the ribs for heat extraction depends on the magnitude of the Rayleigh number. In that case, the top position is the optimal position for the small and the moderate modified Rayleigh numbers.  相似文献   

6.
Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38 × 105 based on the jet diameter. Effects of the jet-to-crossflow momentum ratio on various fundamental mechanisms dictating the intricate flow phenomena, including flow structures, turbulent characters and frequency behaviors, have been studied. The complex flow structures and the relevant flow features are discussed to exhibit the evolution of shock structures, vortical structures and jet shear layers. The strength of the bow shock increases and the sizes of the barrel shock and Mach disk also increase with increasing momentum ratio. Turbulent characters are clarified to be closely related to the flow structures. The jet penetration increases with the increase of the momentum ratio. Moreover, the dominant frequencies of the flow structures are obtained using spectral analysis. The results obtained in this letter provide physical insight in understanding the mechanisms relevant to this complex flow.  相似文献   

7.
Smoothed particle hydrodynamics (SPH) has been widely applied in simulating fluid flow because of its attractive properties, for example, it is fully Lagrangian and mesh free. However, this method usually uses the explicit method to solve the conservation equations and in this form it is only suitable to momentum dominated flows with low viscosity. In polymer processing, the fluid is non-Newtonian with high viscosity, O(103) to O(104) Pa-s say, and the pressure is high as O(106) to O(1010) Pa. The algorithm of the standard SPH is infeasible in this case, because only very small time steps can be used for a stable simulation. We have developed an implicit SPH for non-Newtonian flow, which is completely matrix free, to solve the equation system iteratively and robustly. The artificial pressure is introduced between particles to stabilize the SPH system avoiding the tensile instability. The fluid is compressible under high pressure. Realistic state equations for polymers, such as the Tait and SSY [16] equations are adopted to describe the density/pressure relations. The method is finally applied to the simulation of moulding flow of a modified power law fluid with the zero shear rate viscosity of 1.22 × 104 Pa-s, Reynolds number of 3 × 10?4 to 6 × 10?5 and the highest pressure of O(108) to O(1010) Pa.  相似文献   

8.
In this experimental study, fluorinert FC-72 is boiled on a silicon chip with artificial cavities and integrated microsensors. The horizontal silicon chip with dimensions of 39.5 × 19 × 0.38 mm is completely immersed in FC-72. The integrated nickel–titanium temperature microsensors on the back of the chip are calibrated individually and exhibit a near-linear increase of electrical resistance with temperature. The applied heat fluxes and the resulting wall superheat at the boiling surface are varied by means of an integral thin-film resistance heater (95% Al, 4% Cu and 1% Si), also on the back of the silicon chip. Artificial cylindrical cavities with a mouth diameter of 10 μm and depths of 40, 80 or 100 μm situated above the microthermometers serve as artificial nucleation sites, due to trapped vapour. Bubble growth rates, frequencies, departure diameters of bubbles and waiting times between bubbles from an isolated cavity for different wall superheats and pressures were obtained by analysing high-speed video images and the simultaneously measured temperature below the artificial cavity.  相似文献   

9.
The current paper presents new operational maps for several different multi-microchannel evaporators, with and without any inlet restrictions (micro-orifices), for the two-phase flow of refrigerants R245fa, R236fa, and R1234ze(E). The test fluids flowed in 67 parallel channels, each having a cross-sectional area of 100 × 100 μm2. In order to emulate the power dissipated by active components in a 3D CMOS CPU chip, two aluminium microheaters were sputtered onto the back-side of the test section providing a 0.5 cm2 each. Without any inlet restrictions in the micro-evaporator, significant parallel channel flow instabilities, vapor back flow, and flow maldistribution led to high-amplitude and high-frequency temperature and pressure oscillations. Such undesired phenomena were then prevented by placing restrictions at the inlet of each channel. High-speed flow visualization distinguished eight different operating regimes of the two-phase flow depending on the tested operating conditions. Therefore, the preferred operating regimes can be easily traced. In particular, flashing two-phase flow without back flow appeared to be the best operating regime without any flow and temperature instabilities.  相似文献   

10.
The possible events during bubble formation on an orifice were investigated using a rectangular bubble column (30 cm × 30 cm × 100 cm). The gas flow rate through a single orifice was adjusted from 0.1 dm3/min to 5.0 dm3/min covering a high flow rate regime. At the high gas flow rate, the bubble formation process was complicated by diverse events, such as wake effect, channeling, and orifice-induced turbulent flow. The detachment period could be used to discern the bubble formation steps because it was strongly affected by the above events. The bubble size distribution around the orifice was also analyzed to gain a clearer understanding of the bubble formation process. Above the rate of 3.0 dm3/min through a single orifice, the detachment period converged to a value of 25 ms irrespective of the orifice diameter. The bubble size distribution also showed little difference in this range of gas flow rate. This could be explained by the development of turbulent flow around the orifice. A 0.15 m in-diameter bubble column was tested to investigate the effect of orifice-induced turbulent flow on the regime transition in which the homogeneous flow regime is converted into the heterogeneous flow regime in the column. Obvious distinction between the orifice- and column-induced transitions was observed.  相似文献   

11.
A computational fluid dynamics (CFD) model is used to investigate the hydrodynamics of a gas–solid fluidized bed with two vertical jets. Sand particles with a density of 2660 kg/m3 and a diameter of 5.0 × 10?4 m are employed as the solid phase. Numerical computation is carried out in a 0.57 m × 1.00 m two-dimensional bed using a commercial CFD code, CFX 4.4, together with user-defined Fortran subroutines. The applicability of the CFD model is validated by predicting the bed pressure drop in a bubbling fluidized bed, and the jet detachment time and equivalent bubble diameter in a fluidized bed with a single jet. Subsequently, the model is used to explore the hydrodynamics of two vertical jets in a fluidized bed. The computational results reveal three flow patterns, isolated, merged and transitional jets, depending on the nozzle separation distance and jet gas velocity and influencing significantly the solid circulation pattern. The jet penetration depth is found to increase with increasing jet gas velocity, and can be predicted reasonably well by the correlations of Hong et al. (2003) for isolated jets and of Yang and Keairns (1979) for interacting jets.  相似文献   

12.
A rigorous reformulation of internal entropy production and the rate of entropy flow is developed for multi-component systems consisting of heterophases, interfaces and/or surfaces. The result is a well-posed moving boundary value problem describing the dynamics of curved interfaces and surfaces associated with voids and/or cracks that are intersected by grain boundaries. Extensive computer simulations are performed for void configuration evolution during intergranular motion. In particular we simulate evolution resulting from the action of capillary and electromigration forces in thin film metallic interconnects having a “bamboo” structure, characterized by grain boundaries aligned perpendicular to the free surface of the metallic film interconnects. Analysis of experimental data utilizing previously derived mean time to failure formulas gives consistent values for interface diffusion coefficients and enthalpies of voids. 3.0 × 10−6 exp(−0.62 eV/kT) m2 s−1 is the value obtained for voids that form in the interior of the aluminum interconnects without surface contamination. 6.5 × 10−6 exp(−0.84 eV/kT) m2 s−1 is obtained for those voids that nucleate either at triple junctions or at the grain boundary-technical surface intersections, where the chemical impurities may act as trap centers for hopping vacancies.  相似文献   

13.
Numerical investigation is made for three-dimensional fluid flow and convective heat transfer from an array of solid and perforated fins that are mounted on a flat plate. Incompressible air as working fluid is modeled using Navier–Stokes equations and RNG based k ? ? turbulent model is used to predict turbulent flow parameters. Temperature field inside the fins is obtained by solving Fourier’s conduction equation. The conjugate differential equations for both solid and gas phase are solved simultaneously by finite volume procedure using SIMPLE algorithm. Perforations such as small channels with square cross section are arranged streamwise along the fin’s length and their numbers varied from 1 to 3. Flow and heat transfer characteristics are presented for Reynolds numbers from 2 × 104 to 4 × 104 based on the fin length and Prandtl number is taken Pr = 0.71. Numerical computations are validated with experimental studies of the previous investigators and good agreements were observed. Results show that fins with longitudinal pores, have remarkable heat transfer enhancement in addition to the considerable reduction in weight by comparison with solid fins.  相似文献   

14.
This paper presents the results of an ongoing investigation into transient pressure pulses using Shannon entropy. Pressure fluctuations (produced by gas–solid two-phase flow during fluidized dense-phase conveying) are recorded by pressure transducers installed at strategic locations along a pipeline. This work validates previous work on identifying the flow mode from pressure signals (Mittal, Mallick, & Wypych, 2014). Two different powders, namely fly ash (median particle diameter 45 μm, particle density 1950 kg/m3, loosely poured bulk density 950 kg/m3) and cement (median particle diameter 15 μm, particle density 3060 kg/m3, loosely poured bulk density 1070 kg/m3), are conveyed through different pipelines (51 mm I.D. × 70 m length and 63 mm I.D. × 24 m length). The transient nature of pressure fluctuations (instead of steady-state behavior) is considered in investigating flow characteristics. Shannon entropy is found to increase along straight pipe sections for both solids and both pipelines. However, Shannon entropy decreases after a bend. A comparison of Shannon entropy among different ranges of superficial air velocity reveals that high Shannon entropy corresponds to very low velocities (i.e. 3–5 m/s) and very high velocities (i.e. 11–14 m/s) while low Shannon entropy corresponds to mid-range velocities (i.e. 6–8 m/s).  相似文献   

15.
Hybrid large-eddy type simulations for chevron nozzle jet flows are performed at Mach 0.9 and Re = 1.03 × 106. Without using any subgrid scale model (SGS), the numerical approach applied in the present study is essentially implicit large-eddy simulation (ILES). However, a Reynolds-averaged Navier–Stokes (RANS) solution is patched into the near wall region. This makes the overall solution strategy hybrid RANS–ILES. The disparate turbulence length scales, implied by these different modeling approaches, are matched using a Hamilton–Jacobi equation. The complex geometry features of the chevron nozzles are fully meshed. With numerical fidelity in mind, high quality, hexahedral multi-block meshes of 12.5 × 106 cells are used. Despite the modest meshes, the novel RANS–ILES approach shows encouraging performance. Computed mean and second-order fluctuating quantities of the turbulent near field compare favorably with measurements. The radiated far-field sound is predicted using the Ffowcs Williams and Hawkings (FW–H) surface integral method. Encouraging agreement of the predicted far-field sound directivity and spectra with measurements is obtained.  相似文献   

16.
The paper deals with the topological sensitivity of free, unsupported, statically determinate plane trusses whose horizontal and vertical members form two horizontal layers of square cells and two or more vertical layers. The topology of a truss is decomposed into a form vector – the placement of cells containing diagonal members – and a binary vector describing the slopes of the diagonals. The construction of complete form and slope spaces is provided for any number of vertical layers. Using exhaustive search, forms with minimum and maximum sensitivity to slope change are found for trusses with 2 × 2 through 2 × 8 layers under worst static load condition, represented by the lowest eigenvalue of the least-squares equilibrium matrix. Typical features of the least and most sensitive forms and associated loads and internal forces are shown. Changes of absolute and relative topological sensitivities with increasing number of vertical layers are discussed.  相似文献   

17.
The flow over a truncated cone is a classical and fundamental problem for aerodynamic research due to its three-dimensional and complicated characteristics. The flow is made more complex when examining high angles of incidence. Recently these types of flows have drawn more attention for the purposes of drag reduction in supersonic/hypersonic flows. In the present study the flow over a truncated cone at various incidences was experimentally investigated in a Mach 5 flow with a unit Reynolds number of 13.5 × 106 m−1. The cone semi-apex angle is 15° and the truncation ratio (truncated length/cone length) is 0.5. The incidence of the model varied from −12° to 12° with 3° intervals relative to the freestream direction. The external flow around the truncated cone was visualised by colour Schlieren photography, while the surface flow pattern was revealed using the oil flow method. The surface pressure distribution was measured using the anodized aluminium pressure-sensitive paint (AA-PSP) technique. Both top and sideviews of the pressure distribution on the model surface were acquired at various incidences. AA-PSP showed high pressure sensitivity and captured the complicated flow structures which correlated well with the colour Schlieren and oil flow visualisation results.  相似文献   

18.
Emissions from major agricultural residues were measured using a self-designed combustion system. Emission factors (EFs) of organic carbon (OC), elemental carbon (EC), and water-soluble ions (WSIs) (K+, NH4+, Na+, Mg2+, Ca2+, Cl, NO3, SO42–) in smoke from wheat and rice straw were measured under flaming and smoldering conditions. The OC1/TC (total carbon) was highest (45.8% flaming, 57.7% smoldering) among carbon fractions. The mean EFs for OC (EFOC) and EC (EFEC) were 9.2 ± 3.9 and 2.2 ± 0.7 g/kg for wheat straw and 6.4 ± 1.9 and 1.1 ± 0.3 g/kg for rice straw under flaming conditions, while they were 40.8 ± 5.6 and 5.8 ± 1.0 g/kg and 37.6 ± 6.3 and 5.0 ± 1.4 g/kg under smoldering conditions, respectively. Higher EC ratios were observed in particulate matter (PM) mass under flaming conditions. The OC and EC for the two combustion patterns were significantly correlated (p < 0.01, R = 0.95 for wheat straw; p < 0.01, R = 0.97 for rice straw), and a higher positive correlation between OC3 and EC was observed under both combustion conditions. WSIs emitted from flaming smoke were dominated by Cl and K+, which contributed 3.4% and 2.4% of the PM mass for rice straw and 2.2% and 1.0% for wheat straw, respectively. The EFs of Cl and K+ were 0.73 ± 0.16 and 0.51 ± 0.14 g/kg for wheat straw and 0.25 ± 0.15 and 0.12 ± 0.05 g/kg for rice straw under flaming conditions, while they were 0.42 ± 0.28 and 0.12 ± 0.06 g/kg and 0.30 ± 0.27 and 0.05 ± 0.03 g/kg under smoldering conditions, respectively. Na+, Mg2+, and NH4+ were vital components in PM, comprising from 0.8% (smoldering) to 3.1% (flaming) of the mass. Strong correlations of Cl with K+, NH4+, and Na+ ions were observed in rice straw and the calculated diagnostic ratios of OC/EC, K+/Na+ and Cl/Na+ could be useful to distinguishing crop straw burning from other sources of atmospheric pollution.  相似文献   

19.
A circular water jet (Re = 1.6 × 105; We = 8.8 × 103) plunging at shallow angles (θ  12.5°) into a quiescent pool is investigated computationally and experimentally. A surprising finding from the work is that cavities, of the order of jet diameter, are formed periodically in the impact location, even though the impinging flow is smooth and completely devoid of such a periodicity. Computational prediction of these frequencies was compared with experimental findings, yielding excellent agreement. The region in the vicinity of the impact is characterized by strong churning due to splashing and formation of air cavities. Measured velocity profiles indicate a concentration of momentum beneath the free surface slightly beyond the impact location (X/Dj  14), with a subsequent shift towards the free surface further downstream of this point (X/Dj  30). This shift is due primarily to the action of buoyancy on the cavity/bubble population. Comparisons of the mean velocity profile between simulations and experiments are performed, yielding good agreement, with the exception of the relatively small churning flow region. Further downstream (X/Dj  40), the flow develops mostly due to diffusion and the location of peak velocity coincides with the free surface. In this region, the free surface acts as an adiabatic boundary and restricts momentum diffusion, causing the peak velocity to occur at the free surface.  相似文献   

20.
An accurate estimation of the total pressure drop of a pipeline is important to the reliable design of a pneumatic conveying system. The present paper presents results from an investigation into the modelling of the pressure drop at a bend in the pneumatic conveying of fly ash. Seven existing bend models were used (in conjunction with solids friction models for horizontal and vertical straight pipes, and initial acceleration losses) to predict the total pipeline pressure drop in conveying fly ash (median particle diameter: 30 μm; particle density: 2300 kg/m3; loose-poured bulk density: 700 kg/m3) in three test rigs (pipelines with dimensions of 69 mm inner diameter (I.D.) × 168 m length; 105 mm I.D. × 168 m length; 69 mm I.D. × 554 m length). A comparison of the pneumatic conveying characteristics (PCC) predicted using the seven bend models and experimental results shows that the predicted total pipeline PCC and trends depend on the choice of bend model. While some models predict trends that agree with the experimental results, other models predicted greater bend pressure drops for the dense phase of fly ash than for the dilute phase. Models of Pan, R. (1992). Improving scale-up procedures for the design of pneumatic conveying systems. Doctoral dissertation, University of Wollongong, Australia, Pan, R., & Wypych, P.W. (1998). Dilute and dense phase pneumatic conveying of fly ash. In Proceedings of the sixth International Conference on Bulk Materials Storage and Transportation (pp. 183–189), Wollongong, NSW, Australia and Chambers, A.J., & Marcus, R.D. (1986). Pneumatic conveying calculations. In Proceedings of the second International Conference on Bulk Materials Storage and Transportation (pp. 49–52), Wollongong, Australia reliably predicted the bend losses for systems conveying fly ash over a large range of air flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号