共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuttawit Wattanasakulpong Arisara Chaikittiratana Sacharuck Pornpeerakeat 《Acta Mechanica Sinica》2018,34(6):1124-1135
In this paper, vibration analysis of functionally graded porous beams is carried out using the third-order shear deformation theory. The beams have uniform and non-uniform porosity distributions across their thickness and both ends are supported by rotational and translational springs. The material properties of the beams such as elastic moduli and mass density can be related to the porosity and mass coefficient utilizing the typical mechanical features of open-cell metal foams. The Chebyshev collocation method is applied to solve the governing equations derived from Hamilton’s principle, which is used in order to obtain the accurate natural frequencies for the vibration problem of beams with various general and elastic boundary conditions. Based on the numerical experiments, it is revealed that the natural frequencies of the beams with asymmetric and non-uniform porosity distributions are higher than those of other beams with uniform and symmetric porosity distributions. 相似文献
2.
The nonlinear bending and vibrations of tapered beams made of axially functionally graded (AFG) material are analysed numerically. For a clamped–clamped boundary conditions, Hamilton’s principle is employed so as to balance the potential and kinetic energies, the virtual work done by the damping, and that done by external distributed load. The nonlinear strain–displacement relations are employed to address the geometric nonlinearities originating from large deflections and induced nonlinear tension. Exponential distributions along the length are assumed for the mass density, moduli of elasticity, Poisson’s ratio, and cross-sectional area of the AFG tapered beam; the non-uniform mechanical properties and geometry of the beam along the length make the system asymmetric with respect to the axial coordinate. This non-uniform continuous system is discretised via the Galerkin modal decomposition approach, taking into account a large number of symmetric and asymmetric modes. The linear results are compared and validated with the published results in the literature. The nonlinear results are computed for both static and dynamic cases. The effect of different tapered ratios as well as the gradient index is investigated; the numerical results highlight the importance of employing a high-dimensional discretised model in the analysis of AFG tapered beams. 相似文献
3.
Based on the physical neutral surface, an N-node novel weak form quadrature beam element is proposed and the explicit formulas for computing the stiffness and mass matrices are given. The proposed element is then used to analyze the dynamic behavior of the functionally graded material (FGM) beams under a moving point load. Both elasticity modulus and mass density vary exponentially across the thickness. Investigations show that the maximum dynamic magnification factors are independent of the power-law exponent k at a fixed nondimensional parameter α. This finding may be useful in design and engineering applications. 相似文献
4.
S. Rajasekaran 《Meccanica》2013,48(5):1053-1070
The free vibration of axially functionally graded (FG) non-uniform beams with different boundary conditions is studied using Differential Transformation (DT) based Dynamic Stiffness approach. This method is capable of modeling any beam (Timoshenko or Euler, centrifugally stiffened or not) whose cross sectional area, moment of Inertia and material properties vary along the beam. The effectiveness of the method is confirmed by comparing the present results with existing closed form solutions and numerical results. In FG beams, flexural rigidity and mass density may take majority of functions including polynomials, trigonometric and exponential functions (converted to polynomial expressions). DT based Dynamic stiffness approach is proved to be a versatile and simple approach compared to many other methods already proposed. 相似文献
5.
Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets
The thermal vibration of functionally graded(FG) porous nanocomposite beams reinforced by graphene platelets(GPLs) is studied.The beams are exposed to the thermal gradient with a multilayer structure.The temperature varies linearly across the thickness direction.Three different types of dispersion patterns of GPLs as well as porosity distributions are presented.The material properties vary along the thickness direction.By using the mechanical parameters of closed-cell cellular solid,the variatio... 相似文献
6.
《应用数学和力学(英文版)》2019,(1)
The asymptotic development method is applied to analyze the free vibration of non-uniform axially functionally graded(AFG) beams, of which the governing equations are differential equations with variable coefficients. By decomposing the variable flexural stiffness and mass per unit length into reference invariant and variant parts, the perturbation theory is introduced to obtain an approximate analytical formula of the natural frequencies of the non-uniform AFG beams with different boundary conditions.Furthermore, assuming polynomial distributions of Young's modulus and the mass density, the numerical results of the AFG beams with various taper ratios are obtained and compared with the published literature results. The discussion results illustrate that the proposed method yields an effective estimate of the first three order natural frequencies for the AFG tapered beams. However, the errors increase with the increase in the mode orders especially for the cases with variable heights. In brief, the asymptotic development method is verified to be simple and efficient to analytically study the free vibration of non-uniform AFG beams, and it could be used to analyze any tapered beams with an arbitrary varying cross width. 相似文献
7.
Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equations of elasticity along the beam depth with the inertial resultant forces related to the included coupling and higherorder shear strain. Assuming harmonic response, governing equations of the free vibration of the FGM beam are reduced to a standard system of second-order ordinary differential equations associated with boundary conditions in terms of shape functions related to axial and transverse displacements and the rotational angle. By a shooting method to solve the two-point boundary value problem of the three coupled ordinary differential equations, free vibration response of thick FGM beams is obtained numerically. Particularly, for a beam with simply supported edges, the natural frequency of an FGM Levinson beam is analytically derived in terms of the natural frequency of a corresponding homogenous Euler-Bernoulli beam. As the material properties are assumed to vary through the depth according to the power-law functions, the numerical results of frequencies are presented to examine the effects of the material gradient parameter, the length-to-depth ratio, and the boundary conditions on the vibration response. 相似文献
8.
Static and vibration analysis of functionally graded beams using refined shear deformation theory 总被引:1,自引:0,他引:1
Static and vibration analysis of functionally graded beams using refined shear deformation theory is presented. The developed theory, which does not require shear correction factor, accounts for shear deformation effect and coupling coming from the material anisotropy. Governing equations of motion are derived from the Hamilton’s principle. The resulting coupling is referred to as triply coupled axial-flexural response. A two-noded Hermite-cubic element with five degree-of-freedom per node is developed to solve the problem. Numerical results are obtained for functionally graded beams with simply-supported, cantilever-free and clamped-clamped boundary conditions to investigate effects of the power-law exponent and modulus ratio on the displacements, natural frequencies and corresponding mode shapes. 相似文献
9.
《International Journal of Solids and Structures》2007,44(1):176-196
This paper considers the plane stress problem of generally anisotropic beams with elastic compliance parameters being arbitrary functions of the thickness coordinate. Firstly, the partial differential equation, which is satisfied by the Airy stress function for the plane problem of anisotropic functionally graded materials and involves the effect of body force, is derived. Secondly, a unified method is developed to obtain the stress function. The analytical expressions of axial force, bending moment, shear force and displacements are then deduced through integration. Thirdly, the stress function is employed to solve problems of anisotropic functionally graded plane beams, with the integral constants completely determined from boundary conditions. A series of elasticity solutions are thus obtained, including the solution for beams under tension and pure bending, the solution for cantilever beams subjected to shear force applied at the free end, the solution for cantilever beams or simply supported beams subjected to uniform load, the solution for fixed–fixed beams subjected to uniform load, and the one for beams subjected to body force, etc. These solutions can be easily degenerated into the elasticity solutions for homogeneous beams. Some of them are absolutely new to literature, and some coincide with the available solutions. It is also found that there are certain errors in several available solutions. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a functionally graded anisotropic cantilever beam. 相似文献
10.
C.F. Lü W.Q. Chen R.Q. Xu C.W. Lim 《International Journal of Solids and Structures》2008,45(1):258-275
Elasticity solutions are presented for bending and thermal deformations of functionally graded beams with various end conditions, using the state space-based differential quadrature method. The beams are assumed to be macroscopically isotropic, with Young’s modulus varying exponentially along the thickness and longitudinal directions, while Poisson’s ratio remaining constant. The state space method is adopted to obtain analytically the thickness variation of the elastic field and, when coupled with differential quadrature, the longitudinal discretization can be analyzed in an approximate manner. This approach is then validated by comparing the numerical results with the exact solutions for a special functionally graded beam and with finite element solutions. The influences of material gradient indices on the response of bi-directional functionally graded beams are finally investigated. 相似文献
11.
Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment 总被引:1,自引:0,他引:1
Free vibration of statically thermal postbuckled functionally graded material (FGM) beams with surface-bonded piezoelectric layers subject to both temperature rise and voltage is studied. By accurately considering the axial extension and based on the Euler-Bernoulli beam theory, geometrically nonlinear dynamic governing equations for FGM beams with surface-bonded piezoelectric layers subject to thermo-electro- mechanical loadings are formulated. It is assumed that the material properties of the middle FGM layer vary continuously as a power law function of the thickness coordinate, and the piezoelectric layers are isotropic and homogenous. By assuming that the amplitude of the beam vibration is small and its response is harmonic, the above mentioned non-linear partial differential equations are reduced to two sets of coupled ordinary differential equations. One is for the postbuckling, and the other is for the linear vibration of the beam superimposed upon the postbuckled configuration. Using a shooting method to solve the two sets of ordinary differential equations with fixed-fixed boundary conditions numerically, the response of postbuckling and free vibration in the vicinity of the postbuckled configuration of the beam with fixed-fixed ends and subject to transversely nonuniform heating and uniform electric field is obtained. Thermo-electric postbuckling equilibrium paths and characteristic curves of the first three natural frequencies versus the temperature, the electricity, and the material gradient parameters are plotted. It is found that the three lowest frequencies of the prebuckled beam decrease with the increase of the temperature, but those of a buckled beam increase monotonically with the temperature rise. The results also show that the tensional force produced in the piezoelectric layers by the voltage can efficiently increase the critical buckling temperature and the natural frequency. 相似文献
12.
A nonlocal study of the vibration responses of functionally graded (FG) beams supported by a viscoelastic Winkler-Pasternak foundation is presented. The damping responses of both the Winkler and Pasternak layers of the foundation are considered in the formulation, which were not considered in most literature on this subject, and the bending deformation of the beams and the elastic and damping responses of the foundation as nonlocal by uniting the equivalently differential formulation of well-posed strain-driven (ε-D) and stress-driven (σ-D) two-phase local/nonlocal integral models with constitutive constraints are comprehensively considered, which can address both the stiffness softening and toughing effects due to scale reduction. The generalized differential quadrature method (GDQM) is used to solve the complex eigenvalue problem. After verifying the solution procedure, a series of benchmark results for the vibration frequency of different bounded FG beams supported by the foundation are obtained. Subsequently, the effects of the nonlocality of the foundation on the undamped/damping vibration frequency of the beams are examined. 相似文献
13.
In this study, simple analytical expressions are presented for large amplitude free vibration and post-buckling analysis of functionally graded beams rest on nonlinear elastic foundation subjected to axial force. Euler–Bernoulli assumptions together with Von Karman’s strain–displacement relation are employed to derive the governing partial differential equation of motion. Furthermore, the elastic foundation contains shearing layer and cubic nonlinearity. He’s variational method is employed to obtain the approximate closed form solution of the nonlinear governing equation. Comparison between results of the present work and those available in literature shows the accuracy of this method. Some new results for the nonlinear natural frequencies and buckling load of the FG beams such as the effect of vibration amplitude, elastic coefficients of foundation, axial force, and material inhomogenity are presented for future references. 相似文献
14.
Dong-Liang Sun 《基于设计的结构力学与机械力学》2019,47(1):102-120
Free vibration of nonuniform axially functionally graded Timoshenko beams subjected to combined axially tensile or compressive loading is studied. An emphasis is placed on the effect of tip and distributed axial loads on the natural frequencies and mode shapes for an inhomogeneous cantilever beam including material inhomogeneity and geometric non-uniform cross section. The initial value method is developed to determine the natural frequencies. The method’s effectiveness is verified by comparing our results with previous ones for special cases. Natural frequencies of standing/hanging Timoshenko beams are calculated for four different cross sections. The influences of shear rigidity, taper ratio, gradient index, tip force, and axially distributed loading on the natural frequencies of clamped-free beams are discussed. Material inhomogeneity and geometric non-uniform cross-section strongly affect higher-order vibration frequencies and mode shapes. 相似文献
15.
The free vibration of axially functionally graded (FG) tapered Timoshenko curved beams is studied with the numerical approach. By using the non-uniform rational B-spline (NURBS) basis functions, the exact geometry and the generalized displacement field are formulated. Variable geometric parameters and material properties, including the curvature, cross-sectional area, area moment of inertia, mass density, and Young’s modulus, are expanded as functions of the coordinate in a parametric domain. Based on Hamilton’s principle, the weak formulation is derived by applying a refined constitutive relation which considers the thickness effect. Natural frequencies and mode shapes are obtained from the eigenvalue equation. Circular, elliptic, and parabolic curved beams are considered in numerical examples. The obtained results are in good agreement with those in the existing studies and those calculated by the finite element software ANSYS. Moreover, the effects of the material gradient, taper ratio, slenderness ratio, and heightspan ratio on vibration behaviors are discussed. 相似文献
16.
Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years. Bamboo fibers are renowned for their good mechanical properties, abundance, and short cycle growth. As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications, this paper performs a study on the free vibration and buckling response... 相似文献
17.
《应用数学和力学(英文版)》2019,(12)
In this paper, we analytically study vibration of functionally graded piezoelectric(FGP) nanoplates based on the nonlocal strain gradient theory. The top and bottom surfaces of the nanoplate are made of PZT-5 H and PZT-4, respectively. We employ Hamilton's principle and derive the governing differential equations. Then, we use Navier's solution to obtain the natural frequencies of the FGP nanoplate. In the first step, we compare our results with the obtained results for the piezoelectric nanoplates in the previous studies. In the second step, we neglect the piezoelectric effect and compare our results with those obtained for the functionally graded(FG) nanoplates. Finally, the effects of the FG power index, the nonlocal parameter, the aspect ratio, and the lengthto-thickness ratio, and the nanoplate shape on natural frequencies are investigated. 相似文献
18.
J.N. Reddy 《Journal of the mechanics and physics of solids》2011,59(11):2382-2399
A microstructure-dependent nonlinear Euler-Bernoulli and Timoshenko beam theories which account for through-thickness power-law variation of a two-constituent material are developed using the principle of virtual displacements. The formulation is based on a modified couple stress theory, power-law variation of the material, and the von Kármán geometric nonlinearity. The model contains a material length scale parameter that can capture the size effect in a functionally graded material, unlike the classical Euler-Bernoulli and Timoshenko beam theories. The influence of the parameter on static bending, vibration and buckling is investigated. The theoretical developments presented herein also serve to develop finite element models and determine the effect of the geometric nonlinearity and microstructure-dependent constitutive relations on post-buckling response. 相似文献
19.
The instability of functionally graded material (FGM) structures is one of the major threats to their service safety in engineering applications. This paper aims to clarify a long-standing controversy on the thermal instability type of simply-supported FGM beams. First, based on the Euler-Bernoulli beam theory and von Kármán geometric nonlinearity, a nonlinear governing equation of simply-supported FGM beams under uniform thermal loads by Zhang's two-variable method is formulated. Second, an approximate analytic solution to the nonlinear integro-differential boundary value problem under a thermal-induced inhomogeneous force boundary condition is obtained by using a semiinverse method when the coordinate axis is relocated to the bending axis (physical neutral plane), and then the analytical predictions are verified by the differential quadrature method (DQM). Finally, based on the free energy theorem, it is revealed that the symmetry breaking caused by the material inhomogeneity can make the simply-supported FGM beam under uniform thermal loads occur snap-through postbuckling only in odd modes; furthermore, the nonlinear critical load of thermal buckling varies non-monotonically with the functional gradient index due to the stretching-bending coupling effect. These results are expected to provide new ideas and references for the design and regulation of FGM structures. 相似文献
20.
A symplectic approach is proposed to investigate the Saint-Venant problem of functionally graded beams with Young's modulus varying exponentially in the axial direction and constant Poisson radio. A matrix state equation is derived with a shift-Hamiltonian operator matrix whose particular eigenvalues are proved to compose the basic solutions of the Saint-Venant problem. The present analyses demonstrate that the Saint-Venant solutions under simple extension and pure bending can be derived using either the direct expansion method or the rigid motion removing method. 相似文献