首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
An atomic structure of Al55(Cr1−xMnx)15Si30 (x = 0, 0.49,1) metallic glasses was studied by neutron diffraction. An advantage of the neutron diffraction technique was fully exploited by utilizing the negative scattering length of Mn to form a neutron zero scattering ‘alloy’ for the component Cr0.51Mn0.49 in this quaternary Al---(Cr, Mn)---Si alloy. This allows the atomic distribution of the resulting quasibinary Al---Si metallic glass to be derived directly. Moreover, the (Al, Si)---TM (TM = Mn, Cr) and TM---TM pair correlations were also extracted by taking appropriate linear combinations of the atomic structures for the Al55(Cr1−xMnx)15Si30 (x = 0, 0.49, 1) metallic glasses. A sharp first peak in the (Al,Si) ---TM pair correlations thus obtained led to the conclusion that a strong attractive interaction exists between (Al, Si) and TM atoms and, hence, that the presence of the TM atoms is responsible for the formation of an amorphous phase.  相似文献   

2.
The short-range order structures in ternary ZrF4---BaF2---ErF3 glasses have been studied by X-ray absorption fine structure (XAFS). The near-neighbor structures around Zr, Ba and Er have been determined and compared with that in binary ZrF4---BaF2 glasses. The near-neighbor structures around Zr and Ba are scarcely affected by doping with ErF3. The structural parameters of near neighbors around Er in the glasses are near to that in ErF3, but the corresponding distance and coordination number of near neighbors in the glasses decrease slightly. It is also observed that the intensities of the white lines at the Er L and L absorption edges in these glasses are different from that in c-ErF3. Meanwhile, compared with that of the corresponding fluoride, the changes of the ‘white line’ at the Er L,-edges in the glasses differ from the case of Nd. The causes leading to these differences are discussed.  相似文献   

3.
Xiao Shaozhan  Meng Qingan   《Journal of Non》1986,80(1-3):195-200
11B Fourier transform spectra have been used to study the structure of Na2O---B2O3---SiO2 glasses of mid-alkali content. Based on the measurements of the fraction N4 of four-coordinated borons, it has been found that for K = mol.% SiO2/mol.% B2O3 8 and R = mol.% Na2O/mol.% B2O3 = 1, N4 is obviously smaller than 1 rather than equal to 1 as assumed in the relevant literature. Only when R reaches a value appropriately greater than 1, can the case where N4 = 1 occur. A structural model suggested in this paper can satisfactorily explain the fact.  相似文献   

4.
《Journal of Non》2000,270(1-3):137-146
The Ge25Ga5Se70 and Ge30Ga5Se65 pure and Pr3+-doped glasses were prepared by direct synthesis from elements and PrCl3. It was found that up to 1 mol% PrCl3 can be introduced in the Ge25Ga5Se70 and Ge30Ga5Se65 glasses. Both types of glasses with overstoichiometric and substoichiometric content of Se were homogeneous and of black color. The optical energy gap is Eoptg=2.10 eV, and the glass transition temperature is Tg=543 K for Ge25Ga5Se70 and Tg=633 K for Ge30Ga5Se65. The long-wavelength absorption edge is near 14 μm and it corresponds to multiphonon processes. Doping by Pr3+ ions creates absorption bands in transmission spectra, which can be assigned to the electron transitions from the ground 3H4 level to the higher energy levels of Pr3+ ions 3H5, 3H6, 3F2, 3F3 and 3F4, respectively. By excitation with YAG:Nd laser line (1064 nm), two intense luminescence bands (1343 and 1601 nm) were excited. The first band can be ascribed to electron transitions between 1G4 and 3H5 energy levels of Pr3+ ions. Full width at half of maximum (FWHM) of the intensity of luminescence was found to be 70 nm for (Ge25Ga5Se70)1 − x(PrCl3)x and (Ge30Ga5Se65)1 − x(PrCl3)x glasses. The FWHM in selenide glasses is lower than in halide and sulphide glasses. The second luminescence band (1601 nm) can be probably ascribed to the transitions between 3F3 and 3H4 energy levels of Pr3+ ions. The absorption and luminescence spectra of Pr3+ ions in studied glasses are slightly influenced by stoichiometry of glassy matrix. The Raman spectra of studied glasses were deconvoluted and assignment of Raman bands to individual vibration modes of basic structural units was suggested. The structure of studied glasses is mainly formed by corner-sharing and edge-sharing GeSe4 tetrahedra. The vibration modes of Ga-containing structural units were not found, they are apparently overlapping with Ge-containing structural units due to small difference between atomic weights of Ge and Ga. In the glasses with substoichiometry of Se, the Ge–Ge bonds of Ge2Se6 structural units were found. In Se-rich glasses the Se–Se vibration modes were found. In all studied glasses also ‘wrong' bonds between like atoms were found in small amounts. Maximum phonon energy of studied glasses is 320 cm−1.  相似文献   

5.
Using chemical etching.method, the growth twins in self-frequency doubling laser crystal YbxY1−xAl3(BO34 have been observed. The etching pits on both sides of growth twin boundaries in the (10 1) slice are of the triangles with different orientations. The structure of growth twins is investigated by transmission synchrotron topography. In the transmission synchrotron topograph, the growth twins are visible not by ‘domain contrast’ but by ‘boundary contrast’, i.e. the twins appear in the topograph in form of X-ray kinematical diffraction contrast due to the lattice strain stemming from the impurity incorporation in the boundaries. The growth twins in YbxY1−xAl3(BO3)4 crystal are of inversion types, since no domain contrast was observed.  相似文献   

6.
The atomic structures of amorphous La55Al25Ni20 alloys which have a wide supercooled liquid region and a high reduced glass transition temperature have been studied using anomalous X-ray scattering (AXS) at the Ni K-absorption edge as well as the ordinary X-ray diffraction with Mo K radiation. The interference functions and the radial distribution functions were determined for the amorphous alloys as-quenched and after annealing at various temperatures and also for a fully crystallized sample. These systematic structural studies revealed a drastic change in Ni environment upon crystallization. The need for such atomic rearrangements around the Ni atoms during crystallization may be the reason why the amorphous phase is thermally stable.  相似文献   

7.
The structure and the mixed anion effect in the conductivity have been examined for the mixed anion glasses Li4SiO4---Li3BO3 by molecular dynamics (MD) simulation and X-ray diffraction (XRD) analysis. Structure factors derived from the MD simulation are in good agreement with those from derived from the XRD analysis of the actual glasses, showing that the MD simulation successfully reproduces the actual glass structure. Moreover, the enhancement of the diffusion coefficients of the Li+ ions in the middle of the composition range in the system Li4SiO4---Li3BO3 is simulated by the MD calculation. Structural analysis of the glasses derived from the MD simulation revealed that the increase in the halfwidth of the modified radial distribution function of the Li---O pairs due to the mixing of two ortho-oxoanions is one of the factors in the origin of the mixed anion effect in the conductivity.  相似文献   

8.
The effect of strain rates from 1 × 10−4 s−1 to 2 × 103 s−1 on tensile fracture morphologies of Zr52.5Al10Ni10Cu15Be12.5, Zr65Al10Ni10Cu15, and Zr52.5Al10Ni14.6Cu17.9Ti5 bulk amorphous alloys was investigated by scanning electron microscopy. The results show that the tensile fracture morphologies of three compositions of bulk amorphous alloys are dependent on strain rate. At low strain rates, the tensile fracture surface morphology of Zr-based bulk metallic glasses presents cleavage veins. However, the morphology will become microvoid-coalescence dimples when the strain rate is high enough.  相似文献   

9.
Some structure parameters of niobium borate glasses have been determined with the analytical data of X-ray diffraction and IR spectra. On the basis of experimental results, the model of the Nb2O5---B2O3---K2O (NBK) glass network was inferred to be framed by circular structural units which are composed of six-membered and four-membered groups of NbO6, BO4 and BO3 polyhedra in the glasses.  相似文献   

10.
Raman spectra of ternary sodium aluminosphosphate glasses indicate that for glasses with Al2O3/P2O5<0.63, the glass network is mainly built up of (PO3)nn- chains and rings or different kinds of phosphate groups and AlO4 tetrahedra; for glasses with Al2O3/P2O5>0.63, the glass network is mainly built up of AlPO4 groups.  相似文献   

11.
The La L1 and L3 XANES and L3 EXAFS have been investigated for the series of glasses 10K2O---50SiO2---x La2O3 (x = 1, 5, 10) and (10 − x)K2O---40SiO2−(x/3)La2O3 (x = 7.5, 5, 2.5) and model compounds La2O3, LaAlO3, LaPO4, La2NiO4, La2CuO4 and La(OH)3. An edge resonance at 25 eV above the L1 edge in the glass spectra is concentration-dependent, decreasing in intensity with increasing lanthanum concentration. The 2s → nd forbidden transition increases with La2O3 concentration, indicating a reduction in the ‘average’ site symmetry of the first coordination shell of La. Mapping X(k) space, which is a new and promising technique, was employed to extract bond distance, coordination number and thermal parameters from the EXAFS. By this method, one calculates the complete X(k) space a function of all physically reasonable values of the adjusted parameters in all possible combinations. The advantage in this method is the assurance of a global minimum. Bond lengths were comparable to those obtained by Fourier transforming the phase corrected EXAFS. The values are 2.42 Å (± 0.03 Å) for La---O. The coordination numbers (N ≤ 7 ± 1.5) were derived by mapping and comparison to the published structures for other La compounds. X(k) mapping is compared with least-squares fitting the data, and the correlation between the Debye-Waller factor and coordination number is also discussed.  相似文献   

12.
《Journal of Non》2003,330(1-3):128-141
The electrical and dielectric properties for three series of MoO3–Fe2O3–P2O5 and one series of SrO–Fe2O3–P2O5 glasses were measured by impedance spectroscopy in the frequency range from 0.01 Hz to 3 MHz and over the temperature range from 303 to 473 K. It was shown in Part I that the MoO3 is incorporated into phosphate network and the structure/properties are strongly influenced by the overall O/P ratio. The Fe2O3 content and Fe(II)/Fetot ratio in these glasses have significant effects on the electrical conductivity and dielectric permittivity. With decreasing Fe2O3 content in MoO3–Fe2O3–P2O5 glasses with O/P at 3.5 the dc conductivity, σdc(ω) decreases for two orders of magnitude, which indicates that the conductivity for these glasses depends on Fe2O3 and is independent of the MoO3 content. Also, the dielectric properties such as (ω), (ω) and σac(ω) and their variation with frequency and temperature indicates a decrease in relaxation intensity with increase in the concentration of MoO3. On the other hand, the dc conductivity for MoO3–Fe2O3–P2O5 glasses with O/P > 3.5 increases with the substitution of MoO3 which has been explained by an increase in the number of non-bridging oxygens and formation of Fe–O–P bonds that are responsible for formation of small polarons. The increase in the dielectric permittivity, (ω) with increasing MoO3 content is attributed to the increase in the deformation of glass network with increasing bonding defects. For SrO–Fe2O3–P2O5 glasses the conductivity and dielectric permittivity remained constant with increasing SrO.  相似文献   

13.
The development of microstructure during crystallisation of a glass with composition Y15.2Si14.7Al8.7O54.1N7.4 has been studied by analytical and high resolution transmission electron microscopy. Crystal nucleation at temperatures in the range 965–1050°C occurs by the heterogeneous nucleation of lenticular-shaped yttrium, silicon and aluminium containing crystals on silicon-rich clusters that formed during glass preparation. The lenticular crystals have a wide range of composition after heat treatment at 1050°C; the yttrium cation percentage varies around that of the expected B-phase composition Y2SiAlO5N but the aluminium content is lower and the silicon content generally significantly higher than that. The crystals display the hexagonal crystal structure of B-phase, although the results from EDX analysis imply that the atomic arrangement of the lattice is not the previously proposed B-phase structure. Crystal growth during prolonged heat treatment at 1050°C occurs to a significant extent by coalescence.  相似文献   

14.
Tellurite containing vanadate (50−x)V2O5xBi2O3–50TeO2 glasses with different bismuth (x=0, 5, 10, 15, 20 and 25 wt%) contents have been prepared by rapid quenching method. Ultrasonic velocities (both longitudinal and shear) and attenuation (for longitudinal waves only) measurements have been made using a transducer operated at the fundamental frequency of 5 MHz in the temperature range from 150 to 480 K. The elastic moduli, Debye temperature, and Poisson’s ratio have been obtained both as a function of temperature and Bi2O3 content. The room temperature study on ultrasonic velocities, attenuation, elastic moduli, Poisson’s ratio, Debye temperature and glass transition temperature show the absence of any anomalies with addition of Bi2O3 content. The observed results confirm that the addition of Bi2O3 modifier changes the rigid formula character of TeO2 to a matrix of regular TeO3 and ionic behaviour bonds (NBOs). A monotonic decrease in velocities and elastic moduli, and an increase in attenuation and acoustic loss as a function of temperature in all the glass samples reveal the loose packing structure, which is attributed to the instability of TeO4 trigonal bipyramid units in the network as temperature increases. It is also inferred that the glasses with low Bi2O3 content are more stable than with high Bi2O3 content.  相似文献   

15.
The frequency dependence of the heat capacity in the glass-transition region of Pd40Ni10Cu30P20 was studied by temperature-modulated differential scanning calorimetry (TMDSC) during slow heating and cooling. Such data for low frequencies between 0.1 and 0.01 Hz are not available, especially for metallic glasses. A crossover between mixed static/dynamic and purely dynamic response signals was observed for the lowest frequencies between 1/80 and 1/100 s−1, which allows a direct determination of the average relaxation time at a given cooling rate during the static glass transition. Further, these results were used to evaluate the experimental parameters necessary to truly separate the static and dynamic response in low-frequency modulation calorimetry experiments to obtain the moduli of the dynamic specific heat.  相似文献   

16.
Glass films of pure SiO2 and TiO2 have been prepared on sodalime silica flat slide glasses by the sol-gel process using the dip-coating technique from TEOS and Ti(OC3H7)4 solutions. The various parameters such as chemicals concentrations, viscosity, type of catalyst, withdrawal speed and temperature of densification leading to the obtention of good and adherent coatings with definite film thicknesses are reported. The same technique has been used for the depositon of layers of colored films SiO2---MxOy (M = Co, Mn, Nd and Cr). Brilliant yellow coatings have been obtained with TiO2---CeO2.  相似文献   

17.
Neutron and X-ray diffraction experiments have provided useful information about the topological and chemical short-range order in non-crystalline materials. The availability of new sources and detectors for X-rays and neutrons has greatly improved the statistical accuracy of the scattered intensity and extended its range in momentum (Q) space, yielding high-resolution atomic distribution functions. The methods of isotopic and isomorphous substitution have been used to determine the partial atomic structure factors and their corresponding atomic pair distribution functions in binary metallic systems, and to evaluate the nearest-neighbor interactions in more complicated inorganic glasses. Recent results of structural investigations on Ni-based amorphous alloys and on halide glasses are discussed.  相似文献   

18.
D.B. Miracle  A.L. Greer 《Journal of Non》2008,354(34):4049-4055
It has recently been shown that metallic glass structures can be idealized as inter-penetrating solute-centered atomic clusters that are packed with essentially periodic symmetry. The present work applies the same methodology to explore whether experimental observations can be matched by inter-connected solute-centered clusters that are organized in space via dense random cluster packing, Bergman icosahedral cluster packing or Mackay icosahedral cluster packing. Idealized partial pair distribution functions are developed where the symmetry of the solute positions in the structure is derived from the cluster-packing symmetry and the solute concentration, which establishes occupation of inter-cluster sites, especially β structural sites enclosed by an octahedron of solute-centered clusters. While each of the three models matches major features of the measured solute-solute partial pair distribution functions, the arrangement of clusters with Mackay icosahedral ordering provides the best fit. However, this model is not able to match an essential feature in solute-lean glasses and does not provide the same overall agreement as does periodic cluster packing for solute-rich glasses. Strong similarities between the structure factors in the Mackay icosahedral and periodic cluster-packing models, along with expected deviations from the idealized solute positions studied here, are likely to hinder an unambiguous distinction between these two models.  相似文献   

19.
The properties and structure of (45 - x)RO · xNa2O · 2.5Al2O3 · 52.5P2O5 (R = Mg, Ca, Sr, Ba, 0 x 31 mol%) glasses were investigated. The variation in the molar volumes of glasses in the MgO series is closely related to the formation of the end groups in the glasses with the substitution of Na+ ions for Mg2+ ions, resulting in a variation of the density and refractive index of the glasses. The properties of glasses containing CaO in terms of Na2O substitution depend mainly on the low field strength of Na+ ions substituting for CaO even though the end groups occurring in the glasses increased. The variation in properties of the glasses containing SrO and BaO, some of which were substituted by Na2O, could be explained by differences in masses, field strength and polarizability between the Na+ ions and the alkaline-earth ions due to a small variation in the structure of the glasses despite Na2O substitution.  相似文献   

20.
K. Hirao  T. Komatsu  N. Soga 《Journal of Non》1980,40(1-3):315-323
Mössbauer absorption measurements have been made at room temperature on 57Fe in iron sodium silicate glasses containing 3–15 mol% Fe2O3 and various iron alkali silicate crystals in order to study the state of iron in these glasses. The spectra of all the glasses gave one doublet with a quadrupole splitting varying from 0.73–0.78 mm s−1, while those of Na2O · Fe2O3 · 4 SiO2 and 5 Na2O · Fe2O3 · 8 SiO2 crystals showed much smaller quadrupole splitting, 0.28 mm s−1 and 0.10 mm s−1, respectively, and an asymmetrical doublet of much narrower linewidth. When sodium was replaced by other alkali metals of larger size, such as K and Cs, in MFeSi2O6 and MFeSi3O8 crystals, the quadrupole splitting became wider and approached to 0.73 mm s−1. Such a variation was not observed for glasses. These results suggest that a larger number of non-identical sites exist in iron sodium silicate glasses than in the corresponding crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号