首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
制备并研究了一系列具有白色长余辉的钙镁硅酸盐材料,CaxMgSi2O5+x:Dy3+(x=1,2,3)。在紫外激发的发射谱中观察到来自Dy3+的4f组态内发射:对应4F9/26H15/2跃迁的蓝色发射(480nm)以及对应4F9/26H13/2跃迁的黄色发射(575nm)。低压汞灯(254nm)辐照后产生的长余辉光谱成分与发射谱相同,蓝光与黄光的混合组成白色光。对所研究的大部分样品,白色长余辉发射持续时间超过1h。研究了发射光强度对Dy3+浓度的依赖以及黄光与蓝光强度比与Dy3+掺杂浓度之间的关系,发现不同的基质有不同Dy3+浓度的依赖关系。室温以上的热释光谱表明所研究材料在室温以上具有丰富的热释光峰,因此有潜力进一步改善其长余辉性能。结合实验结果和以往研究,简要讨论了这一类材料的陷阱来源和长余辉发射机理。  相似文献   

2.
Sr2MgS i2O7∶Eu2 ,Dy3 是一种有效的蓝色长余辉材料,采用高温固相法合成了Sr2MgS i2O7,Sr2MgS i2O7∶Dy3 ,Sr2MgS i2O7∶Eu2 及Sr2MgS i2O7∶Eu2 ,Dy3 ,利用同步辐射研究了它们的VUV-UV激发特性。在真空紫外光激发下,在基质中发现了稍弱的位于385 nm的发射带,在双掺杂的样品中,除了Eu2 的4 f5d→4 f发射带(465 nm)外,还观察到了575 nm处的发射峰;通过和Dy3 单掺杂样品的发射谱比较,发现它是来自于Dy3 的4 f-4 f(4F9/2→6H13/2)跃迁。在它们的激发谱上可以看出Dy3 与基质发射的有效激发均处于真空紫外区,在近紫外及可见区激发下未见到它们发光。另外在Sr2MgS i2O7∶Eu2 ,Dy3 中观察到Dy3 的发射也说明了Dy3 在该类长余辉材料中不仅作为陷阱用来延长余辉,而且也以发光中心形式存在于基质中。  相似文献   

3.
SrAl_2B_2O_7:Dy~(3+)材料的制备及其发光性能   总被引:1,自引:0,他引:1       下载免费PDF全文
杨志平  马欣  赵盼盼  宋兆丰 《物理学报》2010,59(8):5387-5391
采用高温固相法制备了SrAl2B2O7:Dy3+发光材料.在350nm紫外光激发下,测得SrAl2B2O7:Dy3+材料的发射光谱为一个多峰宽谱,主峰分别为480,573和678nm;分别和Dy3+的4F9/2→6H15/2,4F9/2→6H13/2,4F9/2→6H11/2的跃迁发射相对应;监测573nm的发射峰,得到材料的激发光谱为一个多峰宽谱,主峰分别为295,325,350,365,400nm.研究了Dy3+掺杂浓度对SrAl2B2O7:Dy3+材料发射光谱的影响,随着Dy3+掺杂浓度的增大,SrAl2B2O7:Dy3+材料的Iy/Ib逐渐增大,根据Judd-Ofelt理论解释了其原因.随着Dy3+掺杂浓度的增大,Dy3+的4F9/2→6H13/2跃迁产生的573nm发射峰强度先增大,在4%时达到最大值,之后减小,其自身的浓度猝灭机理为电偶极-电偶极相互作用.不同的电荷补偿剂Li+,Na+,K+的引入均使发光强度得到提高,尤其以Li+最佳,发光强度提高了大约33%.  相似文献   

4.
利用同步辐射光源(德国HASYLAB实验室的SUPERLUMI实验站)和真空紫外激光(157.6nm)对新型蓝光发射长余辉材料Sr2MgSi2O7∶Eu2 (0·2%),Dy3 (8%)进行了光谱研究。在170nm同步辐射光源激发下,观察到对应Eu2 :5d-4f跃迁的477nm发射带和对应Dy3 :4f-4f跃迁的两组线谱发射,其中只有来自Eu2 的5d-4f发射对长余辉光谱有贡献。在157.6nm激光激发下,除了上述发射外,还明显观察到对应Eu3 的红色线谱(590,614,626nm)。结合这些光谱特性,对Sr2MgSi2O7∶Eu2 ,Dy3 中稀土离子的发光特性以及长余辉发光机理进行了讨论,并提出了Eu2 充当空穴陷阱的可能性。  相似文献   

5.
利用同步辐射光源(德国HASYLAB实验室的SUPERLUMI实验站)和真空紫外激光(157.6nm)对新型蓝光发射长余辉材料Sr2MgSi2O7:Eu2+(0.2%),Dy3+(8%)进行了光谱研究。在170nm同步辐射光源激发下,观察到对应Eu2+:5d-4f跃迁的477nm发射带和对应Dy3+:4f-4f跃迁的两组线谱发射,其中只有来自Eu2+的5d-4f发射对长余辉光谱有贡献。在157.6nm激光激发下,除了上述发射外,还明显观察到对应Eu3+的红色线谱(590,614,626nm)。结合这些光谱特性,对Sr2MgSi2O7:Eu2+,Dy3+中稀土离子的发光特性以及长余辉发光机理进行了讨论,并提出了Eu2+充当空穴陷阱的可能性。  相似文献   

6.
采用高温固相法在还原气氛下合成了Ca9(1-x-y)Al(PO4)7:xCe3+,yDy3+荧光材料,并对其发光特性进行了研究。XRD测试表明所合成样品为纯相Ca9Al(PO4)7晶体。在268 nm紫外光激发下,Ca9Al(PO4)7:Ce3+呈现峰值位于363 nm的宽带发射。在350 nm近紫外光激发下,Ca9Al(PO4)7:Dy3+发射光谱为窄带谱,主峰分别位于483 nm和574 nm,对应Dy3+的4F9/2→6H15/2和4F9/2→6H13/2特征跃迁,呈黄白光发射。荧光光谱表明:Ce3+,Dy3+共掺之后,Ce3+不仅对Dy3+的特征发射有明显的敏化作用,而且通过调节Ce3+和Dy3+的掺杂比例,可实现从黄白光到白光的颜色变化。研究发现:Ca9(1-x-y)Al(PO4)7:xCe3+,yDy3+样品中,掺杂离子的最佳摩尔分数为x=0.02,y=0.02,此时色坐标为(0.306,0.313)。  相似文献   

7.
使用高温固相法制备了La7(1-x)P3O18∶xDy3+发光材料,在347nm激发下,其发射峰分别为480、578、664nm,分别对应离子Dy3+能级内的4F9/2→6H15/2、6H13/2和6H11/2跃迁.随着Dy3+浓度的增加,黄光和蓝光的强度的比值逐渐减小,当Dy3+浓度为2mol%时,发光强度最大,计算出的色坐标处于白光区域内(0.33,0.33),该材料的发光颜色随Dy3+浓度的变化而在白光区域内改变,因此,该材料可作为紫外激发的白色发光材料.  相似文献   

8.
杨志平  赵引红  梁晓双  刘鹏飞  吕梁 《发光学报》2013,34(10):1279-1282
采用高温固相法制备了Ca10Li(PO4)7∶Dy3+发光材料,研究了Dy3+在Ca10Li(PO4)7基质中的发光特性。XRD测量结果表明,烧结温度为1 050℃时所制备的样品为纯相Ca10Li(PO4)7晶体。从激发谱可以看出样品主激发峰位于349 nm(6H15/2→6P7/2),363 nm(6H15/2→6P5/2),385 nm(6H15/2→6M21/2),样品可被UVLED管芯有效激发。发射谱由位于481 nm(蓝)和572 nm(黄)的两个峰组成,对应的能级跃迁为4F9/2→6H15/2、6H13/2。研究了不同Dy3+掺杂浓度对发光强度的影响,当Dy3+的摩尔分数为10%时发光最强。掺入Ce3+作为敏化剂,Ce3+→Dy3+发生共振能量传递,当掺杂量为10%Dy3+、14%Ce3+时,样品发光最强,其强度为单掺10%Dy3+时的13.4倍,发光颜色由黄白变为蓝白。  相似文献   

9.
在空气中900℃温度下,将纯天然无水芒硝( Na2 SO4)和DyF3的混合粉末加热25 min,制备了Na2SO4:Dy3+新型发光材料.通过同步辐射研究了NaSO4:Dy3+的发光性质.并测量了在室温中真空紫外-紫外光下的发射和激发光谱.根据发射光谱得到了不同Dy3+掺杂浓度和不同激发下发光的黄蓝比(Y/B)是不同的.通过监测黄色发光得到的激发光谱,分别由Dy3+,4f9→4f85d跃迁(172 nm)、O2--Tm3+之间的电荷转移带(165 nm)引起的强激发谱和基质吸收(138,245 nm)、对应Dy3+,6 H15/2→4 D7/2,6H15/2→6 P3/2,6 H15/2→6P7/2跃迁(299,325,351nm)引起的弱激发谱组成.  相似文献   

10.
用高温固相法制备了长余辉发光材料Mg2SiO4∶Dy3 ,Mn2 ,对这种材料的红色长余辉性质进行了研究。对以不同掺杂浓度单掺杂Mn2 、单掺杂Dy3 以及双掺杂Dy3 ,Mn2 的Mg2SiO4体系,通过在紫外激发下的发射光谱及其激发光谱的研究,确认了在双掺杂体系中,峰值为660 nm的发光带对应着Mn2 的4T1(4G)→6A1(6S)跃迁,Mn2 为主要发光中心。Mn2 的660 nm发射的激发谱分布很宽,样品在近紫外和可见光区都有良好的吸收,长波边可达600 nm,是这种材料的一个显著优点。还研究了双掺杂体系中Dy3 对Mn2 的660 nm发光带的敏化作用。另外,通过对单掺杂、双掺杂体系热释光曲线的比较,揭示了双掺杂体系中Dy3 的陷阱作用。  相似文献   

11.
采用高温固相法制备了Sr1-xB6O10∶xDy3+材料,研究了Dy3+掺杂浓度对Sr1-xB6O10∶xDy3+材料发射光谱的影响。在349 nm紫外光激发下,Sr1-xB6O10∶xDy3+材料的发射光谱均呈双峰发射,分别为4F9/2→6H15/2的蓝光和4F9/2→6H13/2的黄光。随着掺杂浓度的增大,Dy3+的4F9/2→6H15/2跃迁产生的蓝光发射峰强度先增大,在4%时达到最大值,之后减小。样品的色坐标位于蓝白色区,当Dy3+的摩尔分数为2%,4%,6%,8%,10%时相对应的色坐标分别位于A(0.263,0.317)、B(0.243,0.321)、C(0.233,0.317)、D(0.248,0.296)、E(0.267,0.325)。  相似文献   

12.
为获得Bi2ZnB2O7:Y3+/Dy3+新型荧光粉材料的最强黄光发光强度,运用均匀设计和二次通用旋转组合设计相结合法对Y3+/Dy3+最佳离子掺杂浓度进行优化研究,得到Y3+和Dy3+离子的最佳掺杂浓度分别为4.498mol%和6.001mol%.采用高温固相法合成最优样品,对样品结构进行表征,测定其激发光谱和发射光谱对Dy3+离子在Bi2ZnB2O7基质中的发光性质,研究发现:样品在452nm激发下,发射光谱主要由(460~500nm)蓝光发射、(550~610nm)黄光发射、(650~700nm)红光发射组成,分别对应于Dy3+的4F9/2→6H15/2、4F9/2→6H13/2及4F9/2→6H11/2跃迁;Bi2ZnB2O7基质为Dy3+提供了非中心对称的晶格格位;最优样品中Dy3+的荧光寿命为0.427ms,与相同浓度Dy3+单掺杂样品相比较可知引入Y3+在一定程度上提高了发光强度.  相似文献   

13.
为获得Bi2ZnB2O7:Y3+/Dy3+新型荧光粉材料的最强黄光发光强度,运用均匀设计和二次通用旋转组合设计相结合法对Y3+/Dy3+最佳离子掺杂浓度进行优化研究,得到Y3+和Dy3+离子的最佳掺杂浓度分别为4.498mol%和6.001mol%.采用高温固相法合成最优样品,对样品结构进行表征,测定其激发光谱和发射光谱对Dy3+离子在Bi2ZnB2O7基质中的发光性质,研究发现:样品在452nm激发下,发射光谱主要由(460~500nm)蓝光发射、(550~610nm)黄光发射、(650~700nm)红光发射组成,分别对应于Dy3+的4F9/2→6H15/2、4F9/2→6H13/2及4F9/2→6H11/2跃迁;Bi2ZnB2O7基质为Dy3+提供了非中心对称的晶格格位;最优样品中Dy3+的荧光寿命为0.427ms,与相同浓度Dy3+单掺杂样品相比较可知引入Y3+在一定程度上提高了发光强度.  相似文献   

14.
通过高温固相法合成了一系列Ba3La1-x(PO4)3∶xDy3+荧光粉材料。利用XRD测量样品的物相,结果显示样品为纯相Ba3La(PO4)3晶体。样品的激发光谱由一系列宽谱组成,峰值分别位于322,347,360,386,424,451 nm。在347 nm激发下,荧光粉在482 nm(4F9/2→6H15/2)和575 nm(4F9/2→6H13/2)处有很强的发射。研究了不同Dy3+掺杂浓度对样品发射光谱的影响,当Dy3+摩尔分数x=0.10时出现猝灭现象,浓度猝灭机理为电偶极-电偶极相互作用。确定了不同Dy3+掺杂浓度的Ba3La(PO4)3∶Dy3+的荧光寿命。Ba3La(PO4)3∶Dy3+荧光粉发射光谱的色坐标位于白光区域。  相似文献   

15.
用共沉淀法制备了Y2O2S∶Eu3 ,Mg2 ,Ti4 红色长余辉材料。测量了材料的电子显微形貌、晶体结构和发射光谱。通过与固相法制备的Y2O2S∶Eu3 ,Mg2 ,Ti4 长余辉材料比较,发现两种方法都可以制备粒度基本相同的纯相Y2O2S基质晶体,但共沉淀法样品的颗粒结构更松散。研究了Eu3 浓度对两种方法制备样品的谱线发射强度的影响,通过比较共沉淀法和高温固相法制备的样品中Eu3 的5D1→7F3较高能级跃迁的587.6 nm谱线强度随Eu3 浓度的变化,发现共沉淀法更有利于Eu3 均匀进入Y2O2S基质晶格而形成有效的发光中心。  相似文献   

16.
利用水热法并经过退火煅烧制备了白光LED用正交相Gd2(MoO4)3∶Dy3+荧光粉,用X射线衍射仪和扫描电子显微镜对样品的结构和微观形貌进行表征,利用荧光光谱对其发光性质进行了研究。 在389 nm的紫外光激发下,4F9/26H15/2跃迁产生的蓝光发射和4F9/26H13/2跃迁产生的黄光发射最强。发光光谱分析结果表明,Dy3+的最佳掺杂量为x=16%。此时荧光粉最为接近白光,其色坐标和色温分别为 (0.326, 0.336) 和6 389,是一种很有潜力的白光LED用荧光粉。  相似文献   

17.
Li+离子掺杂Gd2O3∶Sm3+纳米晶的发光增强   总被引:2,自引:2,他引:0  
采用燃烧法制备了Gd2O3∶Sm3 和Li 离子掺杂的Gd2O3∶Sm3 纳米晶,根据X射线衍射图谱确定所得纳米样品为纯立方相.在室温下,用275 nm和980 nm激发光激发各样品时,可分别观测到Sm3 离子的强荧光发射和上转换特征发射,其主发射峰分别位于560,602,650 nm处,分别对应着Sm3 离子的4G5/2→6H5/2,4G5/2→6H7/2和4G5/2→6H9/2的电子跃迁,其中以4G5/2→6H7/2跃迁的光谱强度最大.实验表明Li 离子的掺人使得Sm3 离子的荧光发射强度显著增加.通过对样品的XRD、TEM和激发光谱、发射光谱的研究,分析了引起样品荧光强度变化的原因.  相似文献   

18.
采用高温固相法成功制备了Ca3Y2Si3O12∶Tm3+,Yb3+上转换蓝色发光材料.在980 nm红外激光器激发下,发光粉呈现强烈的蓝光(475 nm)和近红外光(810 nm)以及较弱的红光(650 nm)发射,分别归因于Tm3+离子的1G4 →3H6、3H4→3H6和1 G4→3 F4能级跃迁.随着Yb3+离子浓度的增加,发光粉上转换发射强度和发光亮度均呈现先增强后减弱的变化趋势.在最佳掺杂浓度下(Yb3+摩尔分数为15%),蓝、红光强度分支比为12∶1,色坐标为(0.129 2,0.152 3).在3.9 W/cm2激发功率密度下,发光亮度可达6.8 cd/m2.上述结果证实,所制备发光粉呈现优异的蓝光上转换发射特性并具有潜在的应用价值.发光强度和激发光功率关系表明,所得上转换发射为三光子和双光子吸收过程.借助Tm-Yb体系能级结构详细讨论了上转换发射的跃迁机制.  相似文献   

19.
水热法合成了YL iF4∶Er3 ,Tm3 ,Yb3 ,其中Er3 、Yb3 和Tm3 的摩尔分数分别为1%、1.5%和2%。当用355 nm光激发时,其发光为蓝色,峰值位于450 nm,对应于Tm3 的1D2→3F4跃迁。用378 nm激发时,发光为绿色,主要发光峰位于552 nm。980 nm光激发时,发光为白色,发光峰分别位于665(651),552(543),484,450 nm处,并在648 nm处还观察到了一个发光峰,其中最强的发射为红光。YL iF4∶Er3 ,Tm3 ,Yb3 的蓝光来源于Tm3 的激发态1G4到基态3H6的跃迁,绿光来源于Er3 的4S3/2和2H11/2到基态4I15/2的跃迁,红光既来源于Tm3 的1G4→3F4的跃迁,也来源于Er3 的4F9/2→4I15/2的跃迁。在上转换发光中,还探测到了紫外光359 nm的发射。监测665 nm得到的激发光谱不同于监测552 nm的激发光谱,在665 nm的激发光谱中出现了对应Tm3 的1G4能级的峰。在双对数曲线中,蓝光484 nm、绿光552 nm和红光665 nm的斜率分别为2.25、2.28和2.21,紫外光359 nm的斜率为2.85。因此在980 nm激发下,蓝光484 nm、绿光552 nm和红光665 nm都是双光子过程,紫外光359 nm的发射是三光子过程。  相似文献   

20.
Ca2SiO4:Dy3+材料的制备及其发光特性   总被引:1,自引:0,他引:1       下载免费PDF全文
采用高温固相法制备了Ca2SiO4:Dy3 发光材料,在365 nm紫外光激发下,测得Ca2SiO4:Dy3 材料的发射光谱为一多峰宽谱,主峰分别位于486 nm,575 nm和665 nm处;监测575 nm发射峰,测得材料的激发光谱为一多峰宽谱,主峰分别位于331 nm,361 nm,371 nm,397 nm,435 nm,461 nm和478 nm处,研究了Dy3 掺杂浓度对Ca2SiO4:Dy3 材料发射光谱及发光强度的影响,结果显示,随Dy3 浓度的增大,黄、蓝发射峰强度比(Y/B)逐渐增大,利用Judd-Ofelt理论解释了其原因;随Dy3 浓度的增大,Ca2SiO4:Dy3材料发光强度先增大,在Dy3浓度为4 mol%时到达峰值,而后减小,根据Dexter理论其浓度猝灭机理为电偶极-电偶极相互作用,研究了电荷补偿剂Li ,Na 和K 对Ca2SiO4:Dy3 材料发射光谱的影响,结果显示,不同电荷补偿剂下,随电衙补偿剂掺杂浓度的增大,Ca2SiO4:Dy3 材料发射光谱强度的演化趋势相同,即Ca2SiO4:Dy3材料发射峰强度先增大后减小,但不同电荷补偿剂下,材料发射峰强度最大处对应的补偿剂浓度不同,对应Li ,Na 和K 时,浓度分别为4 mol%,4 mol%和3 mol%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号