首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 577 毫秒
1.
The catalytic effect of europium(III) on the reduction of thionine dye (Th) by selenous acid has been studied by spectrophotometry in aqueous sulfuric acid solutions at a constant ionic strength of 3.0 mol dm?3 and at different temperatures (283–313 K). A first‐order dependence with respect to both [Th] and [EuIII] was obtained, whereas the orders with respect to [SeIV] and [H+] were less than unity. Variation of ionic strength and dielectric constant of the reaction media did not affect the reaction rates. Probable mechanistic schemes for thionine reductions in both the absence and presence of europium(III) catalyst were proposed. The rate laws associated with the reaction mechanisms were derived, and the reaction constants were calculated. The activation parameters of the rate constants of the slow steps of both uncatalyzed and catalyzed reactions along with thermodynamic quantities of the equilibrium constants are computed and discussed.  相似文献   

2.
The kinetics of the reaction of Fast Green dye (FG) with cetylpyridinum chloride was studied in alkaline medium by UV-Visible spectrophotometer. Reduction of Fast Green dye was carried out by varying the fast green dye concentration, cetylpyridinum chloride concentration and concentration of sodium hydroxide. In the present study the reduction of dye was carried out in order to reduce the color content. The interaction of dye was carried out with reducing analyte (cetylpyridinum chloride). The rate of the reaction was determined by varying the above parameters at different temperatures. It was observed that the reduction followed pseudo first-order kinetics with respect to dye, surfactant, OH ion concentration according to the following reaction pathway. The mechanism for the photo bleaching of the dye has been proposed and well confirmed by the data simulation procedure. The activation parameters of the reaction like entropy of activation (ΔS) and free energy of activation (ΔG) showed the extremely solvated states of transient complex which was less disorderly arranged than the oxidized form of dye, whereas E a values reflects a high amount of energy required for the reduction of dye with cetylpyridinum chloride.  相似文献   

3.
The kinetics and mechanism of the reaction between dimethyl acetylendicarboxylate (DMAD) and Meldrum's acid (MA) in the presence of triphenylarsine (TPA) as a catalyst were investigated in a methanol environment by the UV/vis spectrophotometry technique. In this work, the reaction followed second- order kinetics and the first and second steps of the reaction mechanism were recognized as the fast and rate-determining step (RDS), respectively. A significant point in this reaction “in comparison with previous work” is related to the change in behavior of the kinetics and reaction mechanism in the presence of triphenylarsine (TPA). Activation energy and parameters (Ea, ΔH?, ΔS?, and ΔG?) were determined for the reaction and a comparison between ΔH? and TΔS? values showed that the reaction is entropy-controlled. High values of the activation Gibbs free energy indicated that the reaction was chemically controlled. Also, the large negative value of ΔS? implied an associative mechanism.  相似文献   

4.
The present study was aimed at investigating the use of a mixture multiwall carbon nanotube (MWCNT) and thionine (Th) dye in designing of a thionine‐based electrochemical biosensor containing catalase (Ct) enzyme (MWCNT‐Nafion‐Th/Ct) onto a glassy carbon electrode (GCE). The effects of pH, MWCNT concentration and thionine concentration on electrochemical response were explored for optimum analytical performance. The modified electrode exhibited a pair of well‐defined, quasi‐reversible peaks at formal potential (Eo′) = ‐0.218 ± 0.017 V vs. Ag/AgCl corresponding to the Thox/Thred redox couples in the presence of MWCNT, Nafion, and Ct. The electrochemical parameters, including charge‐transfer coefficient (0.36), and apparent heterogeneous electron transfer rate constant (4.28 ± 0.26 s?1) were determined. Using differential pulse voltammetry, the prepared enzyme electrode exhibited a linear response to hydrogen peroxide (H2O2) in the range of 10.0‐100.0 μM with a detection limit 8.7 μM and a sensitivity of 6051.0 μA mM?1 cm?2.  相似文献   

5.
A novel enzyme immobilization technique based on thionine‐bovine serum albumin conjugate (Th‐BSA) and gold colloidal nanoparticles (nano‐Au) was developed. Thionine was covalently bound onto the BSA film with glutaraldehyde(GA) as cross‐linker to achieve Th‐BSA conjugate. The free amino groups of thionine were then used to attach nano‐Au for the immobilization of horseradish peroxidase (HRP). Such nano‐Au/Th‐BSA matrix shows a favorable microenvironment for retaining the native activity of the immobilized HRP and thionine immobilized in this way can effectively shuttle electrons between the electrode and the enzyme. The proposed biosensor displays excellent catalytic activity and rapid response for H2O2. The linear range for the determination of H2O2 is from 4.9×10?7 to 1.6×10?3 M with a detection limit of 2.1×10?7 M at 3σ and a Michaelies‐Menten constant K value of 0.023 mM.  相似文献   

6.
AZMAT Rafia  UDDIN Fahim 《中国化学》2009,27(7):1237-1243
Photo decoloration of the methylene blue (MB) with reducing sugar, ribose (RH), was investigated on an especially designed optical processor using monochromatic radiation of 661 nm through a red filter. The dye molecule gets excited into triplet transient species (MBT) during flushing with lifetime of 10.1 ms into acetate buffered aqueous alcoholic medium, which later on reduces to protonated leuco dye (MBH). Photolysis of the aqueous alcholic medium generated highly reactive oxygen radical (O-•) with the production of 2e-, which led to probable oxidation of the ribose into respective acid while hydrogen abstraction and 2e- reduced the dye (MB) into MBH by following reaction  相似文献   

7.
The kinetics of basic hydrolysis of tris(1,10‐phenanthroline)iron(II) has been carried out in aqueous, N‐cetyl‐N,N,N‐trimethyl ammonium bromide (CTAB) micellar, and CTAB reverse micellar media by UV–visible spectroscopy system. The reaction follows the overall second‐order kinetics; first order in each Fe(II) complex and the base (?OH). CTAB micelles catalyze the reaction rate through the adsorption of the Fe(II) complex and the hydroxyl ions on the micellar surface. In the reverse micellar medium, interesting physicochemical features are observed. Being ionic nature of reactants, both the reactants prefer to stay and react inside the water pool in place of the hydrophobic environment. The rate increases with w, that is, the size of the water pool, attains a maximum value at w = 8.33, and then decreases. But the rate increases as the concentration of surfactant increases at fixed w values. For a better explanation of the kinetic data, the activation parameters, standard enthalpy of activation (Δ?H°), standard entropy of activation (Δ?S°), and energy of activation (Ea) were determined. All kinetic data corroborate the proposed mechanism. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 579–589, 2011  相似文献   

8.
The reaction between the thionine (Th) and the ribose was observed spectrophotometrically and changes in absorbance of Th were recorded at variable concentration of dye, reductant and pH. A pseudo first order rate of reaction was found to establish the reduction kinetics of the dye, studied at a pH range of 0.34 to 12.8. Absorption spectrum of Th at different pH, with ribose showed a pH (12.8) dependent introversion. The reduction most probably took place with enediol intermediate of the sugar at high pH. A full geometry optimization of predominant species of Th namely, mono‐deprotonated, di‐deprotonated Th, and LTh (leuco thionine) respectively, at low and high pH, was performed at B3LYP level of theory. The data obtained from the energy minimization were in excellent agreement with other experimental and theoretical observations. The calculated enthalpies of formation for both reduction reactions (mono‐deprotonated Th+H+→leucothionine and di‐deprotonated Th+2H+→leucothionine) provided evidences for maximum reduction of the dye at high pH.  相似文献   

9.
The kinetics of the reaction of methyl violet with iodide in aqueous methanol system was studied by spectrophotometric method. The rate of reaction of methyl violet in different alcoholic composition in presence of potassium iodide was observed at pH 4 and 6 at various temperatures (298–318 K). Solvatochromic effect was studied in different percentages of methanol (0–50%). Bathochromic shift was observed with the decrease in polarity of solvent. The color change was attributed to molecule's structure, the delocalization of unit electrical charge causes deepening of color and decrease of delocalization causes fading of color due to reduction of dye. Increase in the rate of reaction was observed with increase in alcoholic content and also affected by potassium iodide salt and increased with increase in concentration of potassium iodide. Energy of activation (Ea) and transition energy (ET) were calculated with the help of kinetic data. Thermodynamic parameters such as enthalpy change of activation (ΔH*), Gibbs free energy change of activation (ΔG*) and entropy change of activation (ΔS*) were evaluated as a function of concentration of solvent and salt.  相似文献   

10.
The oxidation kinetics of crystal violet (a triphenylmethane dye) by potassium permanganate was focused in an acidic medium by the spectrophotometric method at 584 nm. The oxidation reaction of crystal violet by potassium permanganate is carried out in an acidic medium at different temperatures ranging within 298–318 K. The kinetic study was carried out to investigate the effect of the concentration, ionic strength and temperature. The reaction followed first order kinetics with respect to potassium permanganate and crystal violet and the overall rate of the reaction was found to be second order. Thermodynamic activation parameters like the activation energy (Ea), enthalpy change (ΔH*), free energy change (ΔG*), and entropy change (ΔS*) have also been evaluated.  相似文献   

11.
The formation of 1 : 2 titanium(III) complex with chromotropic acid (4, 5-dihydroxy-2, 7-naphthalene-disulfonic acid) was observed by spectrophotometric measurements at various ionic strengths. An expression, [Ti(III)]/D=1/Δ? + αH2+/KΔ?[H2R2?]2, was derived for the determination of the formation constant, K=7.2×102 liter2 mol?2 for the Ti(III).(HR)2 ion in the pH range of 1.3–1.8 at constant ionic strength, I=0.2 M, at 25°C. The thermodynamic data for the reaction, Ti(III)+2H3R2?=Ti(III) (HR)2+2H+, were calculated to be ΔG° = ?16 kJ mol?1 ΔH° = 18 kJ mol?1, ΔS° = 110 JK?1 mol?1, at 25°C.  相似文献   

12.
The kinetics of basic hydrolysis of crystal violet (CV) in CTAB/KBr/C9OH micellar media was investigated under pseudo-first-order conditions. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of CV at 590?nm. It was observed that the pseudo-first-order rate constant increases with increase in C0. The enhancement of reaction rate with C0 is explained on the basis of dependence of reaction rate on micellar morphology. Further, the viscosity and DLS analysis supports nonanol-induced morphological transitions. Fluorescence spectroscopy has been used to understand dye–micelles interactions. The enhancement of fluorescence intensity of CV with C0 suggests an increase in dye–micelles interaction with C0. The concentration of surfactant and salt had a marked effect on reaction rate. The inhibition of reaction rate at high concentration of surfactant and salt is due to the ionic competition of OH? and Br? ions for the reaction center. The influence of [OH?] on CV hydrolysis was also investigated. The results show that the pseudo-first-order rate constant, k’, increases linearly with hydroxide ion concentration, indicating first-order dependence on [OH?].  相似文献   

13.
Free laccase and fungal biomass from white-rot fungi were compared in the thermokinetics study of the laccase-catalyzed decolorization of an azo dye, i.e., Trypan Blue. The decolorization in both systems followed a first-order kinetics. The apparent first-order rate constant, k 1′, value increases with temperature. Apparent activation energy of decolorization was similar for both systems at ~22 kJ mol?1, while energy for laccase inactivation was 18 kJ mol?1. Although both systems were endothermic, fungal biomass showed higher enthalpy, entropy, and Gibbs free energy changes for the decolorization compared to free laccase. On the other hand, free laccase showed reaction spontaneity over a wider range of temperature (ΔT?=?40 K) as opposed to fungal biomass (ΔT?=?15 K). Comparison of entropy change (ΔS) values indicated metabolism of the dye by the biomass.  相似文献   

14.
Physical and chemical analysis of the polysaccharide isolated from Sargassum Terarrium (brown algae) of Karachi coast showed characteristics of the sodium alginate. Optical rotations and sulphated ash content were found and FTIR spectra showed a sharp and strong absorption band at 1600 cm?1 representing carboxylate ion which conforms high uronic acid content of the product. The viscosities of aqueous 0.1% sodium alginate solution were measured in the presence of copper II chloride (CuCl2). The viscosities were found to be increased with the increase in the concentration of electrolyte. Viscosities were also found affected with temperature. ‘A’ and ‘B’ coefficients of Jones–Dole equation were evaluated. The increase in positive values of ‘B’ coefficient with the rise of temperature led to conclusion that given electrolyte in 0.1% aqueous sodium alginate solution behaves as structure maker. Thermodynamic parameters regarding to activated state like energy of activation Eη, change in free energy of activation ΔGη and change of entropy of activation ΔSη were also evaluated. Straight-line plots of log η versus 1/T observed with positive slopes show the effect of temperature on the viscosities of solutions. Energy of activation (Eη) was found to be decreased with the rise of temperature. Change in free energy of activation (ΔGη) was also found to be increased with increase in concentrations of electrolyte and also with rise of temperature. The values of change in entropy of activation (ΔSη) were also calculated. Negative values of ΔSη were found to be increased with increase in concentration of electrolyte and also with rise of temperature.  相似文献   

15.
One-electron reduction of thionine has been studied by using the technique of nanosecond pulse radiolysis and kinetic spectrophotometry. H,e aq as well as radicals derived from methanol, ethanol, isopropanol, THF, dioxane andt-butanol by H atom abstraction were used as reductants. The rate constants for the transfer of electrons from these radicalts to thionine were directly determined from the pseudo first-order formation rates of the product, semithionine and the one-electron reduction potential of thionine estimated. The absorption spectrum of semithionine in its different conjugate acid-base forms was found to be in agreement with previously reported spectra and the decay of the species was second order. By monitoring transient absorbance changes as a function of pH, twopK a values were observed and, based on the effect of ionic strength on the second-order decay constants of the species were assigned to the equilibria described.  相似文献   

16.
An investigation of the thionine sensitized aerobic photooxidation of thiourea was observed spectrophotometrically at a wavelength of 598 nm. Articles reported two types of reactions which generally occur in the presence of oxygen: 1) Singlet oxygen, produced by dye sensitization due to the hydrolysis that reacts with thiourea to form oxidative products like urea and other sulfur-containing fragments and 2) bleaching of dye, which leads to the reduction. The rate of reaction in all studied parameters followed first order kinetics with respect to maximum absorption of the dye in the visible band region. Reaction kinetics was significantly dependent upon the medium and the reaction accelerated more rapidly at low pH. A direct relation was exhibited between the thiourea concentration and dye sensitizer, which was not pragmatic with the concentration of dye. The reaction was effected by the temperature, and the values of energy parameters suggested that the energy of activation was low while the entropy of activation increases with the rise in temperature, which indicated a highly solvated state of intermediate complex. Lower value of ΔH* and ΔG* at elevated temperature showed that free energy is the driving force for the completion of reaction. A mechanism based on the above findings has been suggested.  相似文献   

17.
Nitro compounds have been actively researched as driven by their potential to be high‐performing energetic materials. Herein, three new nitro compounds including semicarbazide 3,5‐dinitrobenzoate, (SCZ)(DNBA), manganese 3,5‐dinitrobenzoate dihydrate, [Mn(DNBA)2(H2O)2]n, and bis(semicarbazide) manganese(II) 3,5‐dinitrobenzoate, Mn(SCZ)2(DNBA)2, were synthesized and characterized by elemental analysis, IR spectroscopy, and single‐crystal X‐ray diffraction analysis. The results indicated that the above mentioned compounds are ionic, polymeric, and molecular in nature, respectively. Moreover, their thermal decomposition properties were assessed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Their non‐isothermal reaction kinetics parameters, critical temperature of thermal explosion (Tbp), entropy of activation (ΔS), enthalpy of activation (ΔH), and free energy of activation (ΔG) of the exothermic decomposition process were also calculated. Results suggest that there was a relationship between the structure and thermal stability.  相似文献   

18.
In dye‐sensitized solar cells (DSSCs), a significant dye‐regeneration force (ΔGreg0≥0.5 eV) is usually required for effective dye regeneration, which results in a major energy loss and limits the energy‐conversion efficiency of state‐of‐art DSSCs. We demonstrate that when dye molecules and redox couples that possess similar conjugated ligands are used, efficient dye regeneration occurs with zero or close‐to‐zero driving force. By using Ru(dcbpy)(bpy)22+ as the dye and Ru(bpy)2(MeIm)23+//2+ as the redox couple, a short‐circuit current (Jsc) of 4 mA cm?2 and an open‐circuit voltage (Voc) of 0.9 V were obtained with a ΔGreg0 of 0.07 eV. The same was observed for the N3 dye and Ru(bpy)2(SCN)21+/0Greg0=0.0 eV), which produced an Jsc of 2.5 mA cm?2 and Voc of 0.6 V. Charge recombination occurs at pinholes, limiting the performance of the cells. This proof‐of‐concept study demonstrates that high Voc values can be attained by significantly curtailing the dye‐regeneration force.  相似文献   

19.
We report that 2,6‐lutidine?trichloroborane (Lut?BCl3) reacts with H2 in toluene, bromobenzene, dichloromethane, and Lut solvents producing the neutral hydride, Lut?BHCl2. The mechanism was modeled with density functional theory, and energies of stationary states were calculated at the G3(MP2)B3 level of theory. Lut?BCl3 was calculated to react with H2 and form the ion pair, [LutH+][HBCl3?], with a barrier of ΔH=24.7 kcal mol?1G=29.8 kcal mol?1). Metathesis with a second molecule of Lut?BCl3 produced Lut?BHCl2 and [LutH+][BCl4?]. The overall reaction is exothermic by 6.0 kcal mol?1rG°=?1.1). Alternate pathways were explored involving the borenium cation (LutBCl2+) and the four‐membered boracycle [(CH2{NC5H3Me})BCl2]. Barriers for addition of H2 across the Lut/LutBCl2+ pair and the boracycle B?C bond are substantially higher (ΔG=42.1 and 49.4 kcal mol?1, respectively), such that these pathways are excluded. The barrier for addition of H2 to the boracycle B?N bond is comparable (ΔH=28.5 and ΔG=32 kcal mol?1). Conversion of the intermediate 2‐(BHCl2CH2)‐6‐Me(C5H3NH) to Lut?BHCl2 may occur by intermolecular steps involving proton/hydride transfers to Lut/BCl3. Intramolecular protodeboronation, which could form Lut?BHCl2 directly, is prohibited by a high barrier (ΔH=52, ΔG=51 kcal mol?1).  相似文献   

20.
Abstract

The kinetics for isomerization of HRu333-EtSCCMeCMe)(CO)9 TO Ru3(μ-SEt) (μ33-CCMeCHMe)(CO)9, were determined. The overall process involves C[sbnd]H elimination, C[sbnd]S and Ru[sbnd]Ru bond cleavage and Ru2(μ-S) bond formation. Activation parameters were determined from the temperature dependence (ΔH? = 127(3) kJ/mol, ΔS?= 56(11) J/mol-K) and from the pressure dependence (0[sbnd]207 MPa, ΔV? 0 +12.7(1.1) cm3/mol, Δβ? = +0.037(0.012) cm3/(mol-MPa)) of the rate constant. The data are consistent with an intramolecular reaction involving significant metal-metal or carbon-sulfur bond cleavage in the transition state. The activation volume is too large to be accommodated by C[sbnd]H elimination alone and CO dissociation is not involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号